next up previous contents
Next: About this document ... Up: Linear Algebra Previous: Fixed points for projective   Contents

Bibliography

1
S. L. Altmann, Induced Representations in Crystals and Molecules, Academic Press, New York, 1977.

2
Sheldon Axler, Linear Algebra Done Right, Springer-Verlag, New York, 1997 (ISBN 0-387-98258-2).

3
Åke Björck and Victor Pereyra, ``Solution of Vandermonde Systems of Equations,'' Mathematics of Computation 24 893-903 (1970).

4
Léon Brillouin, Wave Propagation in Periodic Structures, McGraw-Hill Book Company, New York, 1946 (reprint: Dover Publications, Inc., New York, 1953).

5
Jin-quan Chen and Peng-Dong Fan, ``Algebraic solutions for point groups: the tetrahedral group for the group chain $T \supset D_2 \supset C_2$,'' Journal of Mathematical Physics 39 5502-5518 (1998).

6
Richard O. Duda and Peter E. Hart, Pattern Classification and Scene Analysis, John Wiley and Sons, New York, 1973 (ISBN 0-471-22361-1).

7
Adarsh Deepak, Victor Dulock, Billy S. Thomas and Harold V. McIntosh, ``Symmetry Adapted Functions Belonging to the Dirac Groups,'' International Journal of Quantum Chemistry, 3 445-483 (1969).

8
A. Erdélyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Higher Transcendental Functions Volume II, McGraw-Hill Book Company, New York, 1953.

9
G. Galimberti and V. Pereyra, ``Numerical Differentiation and the Solution of Multidimensional Vandermonde Systems,'' Mathematics of Computation 24 357-364 (1970).

10
Ramesh C. Gupta, ``On particular solutions of linear difference equations with constant coefficients,'' SIAM Review 40 680-684 (1998).

11
Michael Hehenberger, Harold V. McIntosh, and Erkki Brändas, ``Weyl's theory applied to the Stark effect in the hydrogen atom,'' Physical Review A 10 1494-1506 (1974).

12
Shui-Hung Hou, ``A simple proof of the Leverrier-Faddeev characteristic polynomial algorithm,'' SIAM Review 40 706-709 (1998).

31
R. B. Kirchner, ``An explicit formula for $e^{At}$,'' American Mathematical Monthly 74 1200-1204 (1967).

14
M. Kwapisz, ``The power of a matrix,'' SIAM Review 40 703-705 (1998).

15
F. Silva Leite and P. Crouch, ``Closed forms for the exponential mapping on matrix Lie groups based on Putzer's method,'' Journal of Mathematical Physics 40 3561-3568 (1999).

16
I. E. Leonard, ``The matrix exponential,'' SIAM Review 38 507-512 (1996).

17
Eduardo Liz, ``A note on the matrix exponential,'' SIAM Review 40 700-702 (1998).

18
Jack Macki, ``Three Notes on the Exponential of a Matrix and Applications,'' SIAM Review 40 699-699 (1998).

19
A. I. Mal'cev, Foundations of Linear Algebra, W. H. Freeman and Company, San Francisco and London, 1963.

20
H. Matsuda, K. Okada, T. Takase, and Y. Yamamoto, ``Theory of Normal Vibrations of Chain Molecules with Finite Length,'' The Journal of Chemical Physics 41 1527-1541 (1964).

21
Harold V. McIntosh, Towards a Theory of the Crystallographic Point Groups, Journal of Molecular Spectroscopy 5 269-283 (1960).

22
Harold V. McIntosh, On Matrices Which Anticommute With a Hamiltonian, Journal of Molecular Spectroscopy 8 169-192 (1962).

23
Harold V. McIntosh, Symmetry Adapted Functions Belonging to the Crystallographic Groups, Journal of Molecular Spectroscopy 10 51-74 (1963).

24
Harold V. McIntosh, Virtual Symmetry, Journal of Molecular Spectroscopy 13 132-147 (1964).

25
Cleve Moler and Charles van Loan, ``Nineteen dubious ways to compute the exponential of a matrix,'' SIAM Review 20 801-836 (1978).

26
Joseph L. Mundy and Andrew Zisserman (Eds.), Geometric Invariance in Computer Vision, The MIT Press, Cambridge, Massachussetts, 1992 (ISBN 0-262-13285-0).

27
Joseph L. Mundy, Andrew Zisserman and David Forsyth (Eds.), ``Application of Invariance in Computer Vision,'' Lecture Notes in Computer Science 825, Springer-Verlag, New York, 1994 (ISBN 0-387-58240-1).

28

J. v. Neumann und E. Wigner, ``Über das Verhalten von Eigenwerten bei adiabatischen Prozessen,'' Physikalische Zeitschrift 30 467-470 (1929).

29
Jesus Ortega Campos, Isidro Romero Medina, Evodio Lopez Rojas, Leonel Torres Hernandez, Harold V. McIntosh, ``Lattice Dynamics with Second Neighbor Interactions,'' International Journal of Quantum Chemistry, 5 201-225 (1971)

30
Pedro L. D. Peres, Ivanil S. Bonatti, and Amauri Lopes, ``Transmission line modelling: a circuit theory approach,'' SIAM Review 40 347-352 (1998).

31
E. J. Putzer, ``Avoiding the Jordan canonical form in the discussion of linear systems with constant coefficients,'' American Mathematical Monthly 73 2-7 (1966).

32
Thomas H. Reiss, ``Recognizing Planar Objects Using Invariant Image Feartures,'' Lecture Notes in Computer Science 676, Springer-Verlag, New York, 1993 (ISBN 0-387-56713-5).

33
Mazi Shirvani and Joseph W.-H. So, ``Solutions of linear differential algebraic equations,'' SIAM Review 40 344-346 (1998).



Pedro Hernandez 2004-02-28