next up previous contents
Siguiente: Algorithms for field arithmetic Arriba: Field operations with the Anterior: Multiplication

Addition

Also, in terms of a primitive element $x_0\in\mathbb{F}_{2^n}^*$ we may express the elements of $\mathbb{F}_{2^n}$ through the map $J: \mathbb{F}_{2^n}\to[\![0,2^n-1]\!]$ such that $J(0)=0$ and $J(x) = \log_{x_0}(x) +1$. For any $i,j\in[\![0,2^n-2]\!]$, with $i\leq j$, we have $x_0^i+x_0^j = x_0^i(1+x_0^{j-i}) = x_0^{i+k}$, where the addition is taken modulus $2^n-1$ and $x_0^k=(1+x_0^{j-i})$, or $p_{nk}(X)\vert\,1+x_0^{j-i}+x_0^k$. Thus, addition involves the irreducible polynomial $p_{nk}(X)$. The corresponding form of addition for $n=2,3,4,5$ are displayed in tables 22-26.


Table: Logarithmic addition table in $[\![0,2^2-1]\!]$ using map $J$.
\fbox{$\begin{array}{rrrr}
0 & 1 & 2 & 3 \\
1 & 0 & 3 & 2 \\
2 & 3 & 0 & 1 \\
3 & 2 & 1 & 0
\end{array}$} Image wb2
(a) (b)



Table: Logarithmic addition table in $[\![0,2^3-1]\!]$ using map $J$.
\fbox{$\begin{array}{rrrrrrrr}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 1 & 0 & 4 & 7 &...
...\\
6 & 2 & 7 & 5 & 3 & 1 & 0 & 2 \\ 7 & 5 & 3 & 1 & 6 & 4 & 2 & 0
\end{array}$} Image wb3
(a) (b)



Table: Logarithmic addition table in $[\![0,2^4-1]\!]$ using map $J$.
\fbox{$\begin{array}{rrrrrrrrrrrrrrrr}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & ...
...5 & 12 & 9 & 6 & 3 & 15 & 12 & 9 & 6 & 3 & 15 & 12 & 9 & 6 & 3 & 0
\end{array}$}
(a)

Image wb4
(b)



Table: Logarithmic addition table in $[\![0,2^5-1]\!]$ using map $J$ (numeric values).
\begin{table}{\small
\begin{center}
\fbox{$\begin{array}{r@{\;}r@{\;}r@{\;}r@{\;...
...12 & 26 & 9 & 23 & 6 & 20 & 3 & 17 & 0
\end{array}$}
\end{center}}\end{table}



Table: Logarithmic addition table in $[\![0,2^5-1]\!]$ using map $J$ (density plot).



next up previous contents
Siguiente: Algorithms for field arithmetic Arriba: Field operations with the Anterior: Multiplication
Guillermo M. Luna
2010-02-19