Next: About this document ...
Up: Tesis
Previous: Lista de Figuras
  Contents
- 1
-
S. Amoroso and G. Cooper.
The Garden-of-Eden theorem for finite configurations.
Proceedings of the American Mathematical Society, 1970.
- 2
-
M. Bando, K. Hasebe, A. Nakayama, A. Shibata, and Y. Sugiyama.
Dynamical model of traffic congestion and numerical simulation.
Physical Review E, 51(2):1035, 1995.
- 3
-
M. Bando, K. Hasebe, A. Nakayama, A. Shibata, and Y. Sugiyama.
Dynamical model of traffic congestion and numerical simulation.
Physical Review E, 51(2):1035-1042, February 1995.
- 4
-
E.R. Banks.
Universality in cellular automata.
Proc. 11th Switch, Automata Th. Conf. (1970).
- 5
-
Robert Barlovic, Andreas Schadschneider, and Michael Schreckenberg.
Random walk theory of jamming in a cellular automaton model for
traffic flow.
Physica A, 294:525-538, February 2001.
- 6
-
R. J. Beckman.
The Dallas-Ft. Worth case study.
Disponible en: http://www-transims.tsasa.lanl.gov/IOC-1.html,
November 1997.
- 7
-
George D. Birkhoff.
Dynamical Systems.
American Mathematical Society, Providence Rhode Island, 1927.
- 8
-
Michael Blank.
Variational principles in the analysis of traffic flows.
Disponible en la siguiente dirección de Internet:
http://www.trafficforum.org/, March 2000.
- 9
-
N. Boccara, H Fuks, and Q. Zeng.
Car accidents and number of stopped cars due to road blockage on a
one-lane highway.
J. Phys A: Math. Gen., 30:3329-3332, August 1999.
- 10
-
Nino Boccara.
On the existence of a variational principle for deterministic
cellular automaton models highway traffic flow.
International Journal of Modern Physics C, 12(2):143-158, May
2001.
- 11
-
Nino Boccara and Henryk Fuks.
Critical behavior of a cellular automaton highway traffic model.
to appear in Journal of Physics A: Mathematical and General,
2000.
- 12
-
Elmer Brockfeld, Robert Barlovic, Andreas Schadschneider, and Michael
Schreckenberg.
Optimizing traffic lights in a cellular automaton model for city
traffic.
Disponible en la siguiente dirección de Internet:
http://vwisb7.vkw.tu-dresden.de/TrafficForum/index.html, July 2001.
- 13
-
Arthur W. Burks, editor.
Essays on Cellular Automata. University of Illinois Press,
Urbana, 1970.
- 14
-
S. Cheybani, J.Kertész, and M. Schreckenberg.
The nondeterministic Nagel-Schreckenberg traffic model with open
boundary conditions.
Disponible en:
http://vwisb7.vkw.tu-dresden.de/TrafficForum/index.html, June 2000.
- 15
-
Bastien Chopard, Alexandre Dupuis, and Pascal Luthi.
A cellular automata model for urban traffic and its application to
the city of Geneva.
In M. Schreckenberg and D.E. Wolf, editors, Proceedings of
Traffic and Granular Flow 1997. Springer-Verlag Singapore Pte. Ltd., 1998.
- 16
-
Bastien Chopard, Pierre-Antoine Queloz, and Pascal Luthi.
Traffic models of a 2d road network.
In 3rd European Connection Machine Users Meeting, October 1995.
- 17
-
Debashish Chowdhury and Vishwesha G.
Cellular-automata models of ant-trail and vehicular traffic:
similarities and differences.
Disponible en la siguiente dirección de Internet:
http://vwisb7.vkw.tu-dresden.de/TrafficForum/index.html, January 2002.
- 18
-
Debashish Chowdhury, Ludger Santen, and Andreas Schadschneider.
Statistical physics of vehicular traffic and some related systems.
Physics Reports 329, Institut für Theoretische Physik,
Universität zu Köln, D-50923 Köln, Germany, July 2000.
- 19
-
E.F. Codd.
Cellular Automata.
Academic Press, New York, 1968.
- 20
-
N. G. de Bruijn.
A combinatorial problem.
Koninklijke Nederlands Akademic van Wetenschappen, Proceedings,
49:758-764, 1946.
- 21
-
B. Eisenblätter, L. Santen, A. Schadschneider, and M. Schreckenberg.
Jamming transition in a cellular automaton model for traffic flow.
Physical Review E, 57(2):1309-1314, February 1998.
- 22
-
Jörg Esser and Kai Nagel.
Iterative census-based demand generation for transportation
simulations.
Technical Report 345, Institute for Scientific Computing, ETH
Zürich, June 2000.
- 23
-
Henryk Fuks.
Solution of the density classification problem with two cellular
automata rules.
Physical Review E, 55(3):R2081-R2084, March 1997.
- 24
-
Henryk Fuks and Nino Boccara.
Generalized deterministic traffic rules.
International Journal of Modern Physics C, 1997.
- 25
-
M. Fukui and Y. Ishibashi.
Traffic flow in 1d cellular automaton model including cars moving
with high speed.
J. Phys. Soc. Jpn., 65:1868-1870, 1996.
- 26
-
Martin Gardner.
On cellular automata, self-reproduction, The Garden of Eden and
the game ``Life".
Scientific American, 224(2):112-117, 1971.
- 27
-
Demos C. Gazis, editor.
Traffic Science, chapter Flow Theories.
John Wiley and Sons, 1974.
- 28
-
Geoffrey Gordon.
Simulación de sistemas.
Editorial Diana, 1980.
- 29
-
Frank A. Haight.
Mathematical theories of Traffic Flow, volume 7 of Mathematics in science and engineering.
Academic press, 1963.
- 30
-
Gustav Arnold Hedlund.
Endomorphisms and automorphisms of the shift dynamical system.
Mathematical Systems Theory, 3:320-375, 1969.
- 31
-
Dirk Helbing.
Empirical traffic data and their implications for consistent traffic
flow modeling.
Physical Review E, 55:R25-R28, June 1997.
- 32
-
Dirk Helbing.
Fundamentals of traffic flow.
Physical Review E, 55:3735-3738, June 1998.
- 33
-
Dirk Helbing.
Traffic and related self-driven many-particle systems.
Technical report, Institute for Economics and Traffic, Dresden
University of Technology, Andreas-Schubert-Str. 23, D-01062 Dresden, Germany,
April 2001.
- 34
-
Dirk Helbing, Ansgar Hennecke, Vladimir Shvetsov, and Martin Treiber.
Micro and macrosimulation of freeway traffic.
Mathematical and Computer Modelling, 35(5/6):517-547, 2002.
- 35
-
Dirk Helbing and Benno Tilch.
Generalized force model of traffic dynamics.
Physical Review E, 58:133-138, June 1998.
- 36
-
Robert Herman, editor.
Proceedings of the Symposium on the Theory of Traffic Flow.
Elsevier Publishing Company, 1961.
- 37
-
Bernardo A. Huberman, Dirk Helbing, and M. Maurer.
Optimizing traffic in virtual and real space.
In D. Helbing, H. J. Herrmann, M. Schreckenberg, and D. E. Wolf,
editors, Traffic and Granular Flow '99: Social, Traffic, and Granular
Dynamics. Springer, Berlin, 2000.
- 38
-
I. Ispolatov and P. L. Krapivsky.
Phase transition in a traffic model with passing.
Disponible en:
http://vwisb7.vkw.tu-dresden.de/TrafficForum/index.html, February 2000.
- 39
-
Kendall Preston Jr. and Michael J. B. Duff.
Modern Cellular Automata.
Plenum Press, New York, 1984.
- 40
-
B. S. Kerner and P. Konhäuser.
Structure and parameters of clusters in traffic flow.
Physical Review E, 50, 1994.
- 41
-
W. Knospe, L Santen, A. Schadschneider, and M Schreckenberg.
Towards a realistic microscopic description of highway traffic.
J. Phys. A: Math. Gen., 33:L477-L485, 2000.
- 42
-
S. Krauß, Kai Nagel, and P. Wagner.
The mechanism of flow breakdown in traffic flow models.
Presented at the International Symposium for Traffic and
Transportation Theory (ISTTT) 1999 in Jerusalem.
- 43
-
S. Kriso, R. Friedrich, J. Peinke, and P. Wagner.
Reconstruction of dynamical equations for traffic flow.
Disponible en:
http://vwisb7.vkw.tu-dresden.de/TrafficForum/index.html, October 2001.
- 44
-
Mark Land and Richard K. Belew.
No perfect two-state cellular automata for density classification
exists.
Physical Review Letters, 74(25):5148-5150, June 1995.
- 45
-
M. E. Lárraga, J. A. del Río, and Anita Mehta.
Possible self-organised criticality and dynamical clustering of
traffic flow in open systems.
Disponible en:
http://vwisb7.vkw.tu-dresden.de/TrafficForum/index.html, October 1999.
- 46
-
H. Y. Lee, H.-W. Lee, and D. Kim.
Phase diagram of congested traffic flow: An empirical study.
Disponible en:
http://vwisb7.vkw.tu-dresden.de/TrafficForum/index.html, August 2000.
- 47
-
Wilhelm Leutzbach.
Introduction to the Theory of Traffic Flow.
Springer-Verlag, 1988.
- 48
-
Anthony D. Mason and Andrew W. Woods.
Car-following model of multispecies systems of road traffic.
Physical Review E, 55(3):2203-2214, March 1997.
- 49
-
W. S. McCulloch and W. Pitts.
A logical calculus of the ideas immanent in nervous activity.
Bulletin of Mathematical Biophysics, 5:115-133, 1943.
- 50
-
Harold V. McIntosh.
Linear Cellular Automata.
Universidad Autónoma de Puebla, Mayo de 1987, Revisado en Agosto de
1990.
http://delta.cs.cinvestav.mx/~ mcintosh/newweb/papers.html.
- 51
-
Harold V. McIntosh.
Linear cellular automata via de bruijn diagrams.
Disponible en la siguiente dirección de Internet:
http://delta.cs.cinvestav.mx/~ mcintosh/newweb/papers.html,
1992.
- 52
-
Harold V. McIntosh.
Reversible cellular automata.
Disponible en:
http://delta.cs.cinvestav.mx/~ mcintosh/newweb/papers.html,
1992.
- 53
-
Edward F. Moore.
Mathematics in the biological sciences.
Scientific American, September 1964.
- 54
-
Takashi Nagatani.
Bunching of cars in asymmetric exclusion models for freeway traffic.
Physical Review E, 51(2):922-928, February 1995.
- 55
-
Takashi Nagatani.
Stabilization and enhancement of traffic flow by the
next-nearest-neighbor interaction.
Physical Review E, 60(6):6395-6401, December 1999.
- 56
-
K. Nagel and M. Rickert.
Experiences with a simplified microsimulation for the
Dallas/Forth-Worth Area.
International Journal of Modern Physics C, 8(3):483-503, March
1997.
- 57
-
Kai Nagel.
High-speed microsimulations of traffic flow.
PhD thesis, Mathematisches Institute, Universität zu
Köln, 1994.
- 58
-
Kai Nagel.
Individual adaptation in a path-based simulation of the freeway
network of Northrhine-Westfalia.
Modern Physics C, 7(61):883-892, 1996.
- 59
-
Kai Nagel.
Particle hopping models and traffic flow theory.
Physical Review E, 53(5):4655-4672, May 1996.
- 60
-
Kai Nagel.
Distributed intelligence in large scale traffic simulations on
parallel computers.
Disponible en:
http://www.inf.ethz.ch/ nagel/papers/sfi-distrib-intelligence/html/sfi-distrib-intelligence.html, January 2002.
- 61
-
Kai Nagel, Chistopher L. Barrett, and Marcus Rickert.
Parallel traffic micro-simulation by cellular automata and
application for large scale transportation modeling.
TRANSIMS Report Series, Los Alamos National Laboratory, January
1996.
- 62
-
Kai Nagel and Christopher Barrett.
Using microsimulation feedback for trip adaptation for realistic
traffic in Dallas.
Modern Physics C, 8(3):505-525, 1997.
- 63
-
Kai Nagel, Richard L. Beckman, and Christopher L. Barrett.
Transims for transportation planning.
Proceedings of the International Conference on Complex Systems,
Nashua, NH, 1999.
- 64
-
Kai Nagel, Jörg Esser, and Marcus Rickert.
Large-scale traffic simulations for transportation planning.
Disponible en:
http://www.inf.ethz.ch/~ nagel/papers/, 2000.
- 65
-
Kai Nagel, Christopher Kayatz, and Peter Wagner.
Breakdown and recovery in traffic flow models.
Presentado en Traffic and Granular Flow 2001. Disponible en:
http://www.inf.ethz.ch/~ nagel/papers, 2001.
- 66
-
Kai Nagel and Maya Paczuski.
Emergent traffic jams.
Physical Review E, 51(4):2909-2918, April 1995.
- 67
-
Kai Nagel and Steen Rasmussen.
Traffic at the edge of chaos.
Disponible en:
http://www.inf.ethz.ch/~ nagel/papers, 1994.
Artificial Life IV, edited by R.A. Brooks and P. Maes, MIT Press
Cambridge MA, pp 222-235.
- 68
-
Kai Nagel, Paula Strotz, Martin Pieck, Shannon Leckey, Rick Donnelly, and
Christopher L. Barret.
TRANSIMS traffic flow characteristics.
Disponible en la siguiente dirección de Internet:
http://vwisb7.vkw.tu-dresden.de/TrafficForum/index.html, March 1999.
- 69
-
Kai Nagel, Dietrich E. Wolf, Peter Wagner, and Patrice Simon.
Two-lane traffic rules for cellular automata: A systematic approach.
Physical Review E, 58(2):1425-1437, August 1998.
- 70
-
L. Neubert, L. Santen, A. Schadschneider, and M. Schreckenberg.
Statistical analysis of freeway traffic.
Disponible en:
http://vwisb7.vkw.tu-dresden.de/TrafficForum/index.html, November 1999.
- 71
-
K. Nishinari and D. Takahashi.
Analytical properties of ultradiscrete burgers equation and rule-184
cellular automaton.
J. Phys. A, 31:5439, 1998.
- 72
-
K. Nishinari and D. Takahashi.
A family of multi-value cellular automaton model for traffic flow.
Disponible en:
http://vwisb7.vkw.tu-dresden.de/TrafficForum/index.html, Febrary 2000.
- 73
-
Alexander I. Olemskoi and Alexei V. Khomenko.
Synergetic theory for jamming transition in traffic flow.
Disponible en:
http://vwisb7.vkw.tu-dresden.de/TrafficForum/index.html, April 2000.
- 74
-
Página personal de Kai Nagel.
http://www.inf.ethz.ch/~ nagel.
- 75
-
A. Pottmeier, R. Barlovic, W. Knospe, A. Schadschneider, and M. Schreckenberg.
Localized defects in a cellular automaton model for traffic flow with
phase separation.
Disponible en:
http://vwisb7.vkw.tu-dresden.de/TrafficForum/index.html, November 2001.
- 76
-
Applet que muestra una simulación de tránsito de autos.
http://www.traffic.uni-duisburg.de/model/.
- 77
-
Schwarzmann R.
Das eurotopp modell.
Technical report, Institut für Verkehrswesen, July 1992.
- 78
-
Bryan Raney and Kai Nagel.
Iterative route planning for modular transportation simulation.
presented at the Swiss Transportation Research Conference 2002
(STRC'02). Disponible en:
http://www.inf.ethz.ch/~ nagel/papers.
- 79
-
M. Rickert, Kai Nagel, M. Schreckenberg, and A. Latour.
Two lane traffic simulations using cellular automata: Comparison with
reality.
Technical Report 95.213, Center for Parallel Computing, University of
Cologne, D-50931 Cologne, Germany, 1995.
- 80
-
M. Rickert, Kai Nagel, M. Schreckenberg, and A. Latour.
Two lane traffic simulations using cellular automata.
Physica A, 231:534-550, 1996.
- 81
-
Marcus Rickert and Kai Nagel.
Dynamic traffic assignment on parallel computers in TRANSIMS.
Future generation computer systems, 17(5):637-648, 2001.
Disponible en: http://www.inf.ethz.ch/~ nagel/papers.
- 82
-
Stephan Rosswog and Peter Wagner.
Towards a macroscopic modelling of the complexity in traffic flow.
Disponible en:
http://vwisb7.vkw.tu-dresden.de/TrafficForum/index.html, October 2001.
- 83
-
A. Schadschneider, D. Chowdhury, E. Brockfeld, and K. Klauck.
A new cellular automata model for city traffic.
Disponible en:
http://vwisb7.vkw.tu-dresden.de/TrafficForum/index.html, November 1999.
- 84
-
Andreas Schadschneider.
Statistical physics of traffic flow.
Physica A, 285(101), 2000.
- 85
-
Andreas Schadschneider and Michael Schreckenberg.
Comment on Garden of Eden states in traffic model revisited.
Disponible en:
http://vwisb7.vkw.tu-dresden.de/TrafficForum/index.html, January 2002.
- 86
-
M. Schreckenberg, R. Barlovic, W. Knospe, and H. Klupfe.
Statistical physics of cellular automata models for traffic flow.
In M. Schreiber K. H. Hoffmann, editor, Computational
Statistical Physics, pages 113-126. Springer, Berlin, 2001.
- 87
-
P. M. Simon and K. Nagel.
Simplified cellular automaton model for city traffic.
Physical Review E, 58(2):1286-1295, August 1998.
- 88
-
Patrice M. Simon, Jörg Esser, and Kai Nagel.
Simple queueing model applied to the city of portland.
Technical report, Los Alamos National Laboratory and Santa Fe
Institute, 1399 Hyde Park Rd, Santa Fe NM 87501, U.S.A., May 9 1999.
- 89
-
P.M. Simon and H.A. Gutowitz.
A cellular automata model for bi-directional traffic.
Physical Review E, 57:2441, 1998.
- 90
-
Sven Skyum.
Confusion in the Garden of Eden.
Proceedings of the American Mathematical Society, July 1975.
- 91
-
M. Takayasu and H. Takayasu.
1/f noise in a traffic model.
Fractals 1, pages 860-866, 1993.
- 92
-
Benno Tilch and Dirk Helbing.
Evaluation of single vehicle data in dependence of the vehicle-type,
lane, and site.
Disponible en:
http://vwisb7.vkw.tu-dresden.de/TrafficForum/index.html, December 1999.
- 93
-
T. Toffoli and N. Margolus.
Cellular Automata Machines.
MIT Press Series in Scientific Computation, 1987.
- 94
-
Andreas Voellmy, Milenko Vrtic, Bryan Raney, Kay Axhausen, and Kai Nagel.
Status of a TRANSIMS implementation for Switzerland.
to appear in: Networks and Spatial Economics, December 2001.
Disponible en: http://www.inf.ethz.ch/~ nagel/papers.
- 95
-
John von Neumann.
Theory of self-reproducing automata.
University of Illinois Press, 1966.
Edited and completed by A. W. Burks.
- 96
-
Burton H. Voorhees.
Computational Analysis of one-dimensional Cellular Automata,
volume 15 of Nonlinear science.
World Scientific, 1996.
- 97
-
P. Wagner.
Traffic simulations using cellular automata: Comparison with reality.
Technical Report 95.214, Center for Parallel Computing, University of
Cologne, D-50931 Cologne, Germany, 1995.
- 98
-
Peter Wagner and Kai Nagel.
Microscopic modelling of travel demand: The home-to-work problem.
Paper No. 990919, December 1998.
- 99
-
Peter Wagner, Kai Nagel, and Dietrich F. Wolf.
Realistic multi-lane traffic rules for cellular automata.
Physica A, 234:687-698, 1997.
- 100
-
Lei Wang, Bing-Hong Wang, and Bambi Hu.
A cellular automaton traffic flow model between the
Fukui-Ishibashi and Nagel-Schreckenberg models.
Disponible en:
http://vwisb7.vkw.tu-dresden.de/TrafficForum/index.html, February 2001.
- 101
-
Stephen Wolfram.
Theory and Applications of Cellular Automata.
World Scientific, 1986.
- 102
-
Stephen Wolfram.
Cellular Automata and Complexity.
Addison Wesley, 1994.
- 103
-
Satoshi Yukawa and Macoto Kikuchi.
Coupled-map modeling of one-dimensional traffic flow.
Journal of the Physical Society of Japan, 64(1):35-37, January
1995.
rene
2003-10-20