Collections on Evolutionary Multiobjective Optimization

Maintained by

Carlos A. Coello Coello
ccoello@cs.cinvestav.mx
CINVESTAV-IPN
Departamento de Computación
Av. Instituto Politécnico Nacional No. 2508
Col. San Pedro Zacatenco
México, D.F. 07300

Last Update: June 23th, 2014

(Keep in mind that this list is constantly being updated)


Author: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

    A

  1. Hussein Abbass. Pareto-Optimal Approaches to Neuro-Ensemble Learning, in Yaochu Jin (Editor), Multi-Objective Machine Learning, pp. 407--427, Springer. Studies in Computational Intelligence, Volume 16, Berlin, 2006.
  2. Mohammad A. Abido. Multiobjective Evolutionary Algorithms for Electric Power Dispatch Problem, in Christine L. Mumford and Lakhmi C. Jain (editors), Computational Intelligence Collaboration, Fusion and Emergence, pp. 47--82, Springer, Studies in Computational Intelligence (SCI), Berlin, ISBN 978-3-642-01799-5, 2010.
  3. M.A. Abido. Multiobjective Particle Swarm Optimization for Optimal Power Flow Problem, in Bijaya Ketan Panigrahi, Yuhui Shi and Meng-Hiot Lim (editors), Handbook of Swarm Intelligence. Concepts, Principles and Applications, pp. 241--268, Springer-Verlag, Belin, Germany, 2011. ISBN 978-3-642-17389-9.
  4. Ajith Abraham and Lakhmi Jain. Evolutionary Multiobjective Optimization, in Ajith Abraham, Lakhmi Jain and Robert Goldberg (editors), Evolutionary Multiobjective Optimization. Theoretical Advances and Applications, pp. 1--6, Springer, USA, 2005.
  5. Ajith Abraham, Hongbo Liu, Crina Grosan and Fatos Xhafa. Nature Inspired Meta-heuristics for Grid Scheduling: Single and Multi-objective Optimization Approaches, in Fatos Xhafa and Ajith Abraham (editors), Metaheuristics for Scheduling in Distributed Computing Environments, pp. 247--272, Berlin, Germany, Springer. Studies in Computational Intelligence Vol. 146, 2008.
  6. Salem F. Adra and Peter F. Fleming. A Diversity Management Operator for Evolutionary Many-Objective Optimisation, in Matthias Ehrgott, Carlos M. Fonseca, Xavier Gandibleux, Jin-Kao Hao and Marc Sevaux (editors), Evolutionary Multi-Criterion Optimization. 5th International Conference, EMO 2009, pp. 81--94, Springer. Lecture Notes in Computer Science Vol. 5467, Nantes, France, April 2009.
  7. Salem F. Adra, Ian Griffin and Peter J. Fleming. A Convergence Acceleration Technique for Multiobjective Optimisation, in Chi-Keong Goh, Yew-Soon Ong, and Kay Chen Tan (editors), Multi-Objective Memetic Algorithms, chapter 9, pp. 183--205, Springer, Studies in Computational Intelligence, Vol. 171, Berlin, Germany, 2009. ISBN 978-3-540-88050-9.
  8. Hadi Aghassi, Sedigheh Nader Abadi and Emad Roghanian. A Multi-objective Genetic Algorithm for Optimization Time-Cost Trade-off Scheduling, in Dickson Lukose, Abdul Rahim Ahmad and Azizah Suliman (editors), Knowledge Technology, Third Knowledge Technology Week, KTW 2011, pp. 356--359, Springer. Communications in Computer and Information Science Vol. 295, Kajang, Malaysia, July 18-22, 2011.
  9. Hernán E. Aguirre, Kiyoshi Tanaka, Tatsuo Sugimura and Shinjiro Oshita. Halftone Image Generation with Improved Multiobjective Genetic Algorithm. In Eckart Zitzler, Kalyanmoy Deb, Lothar Thiele, Carlos A. Coello Coello and David Corne, editors, First International Conference on Evolutionary Multi-Criterion Optimization, pp. 501--515. Springer-Verlag. Lecture Notes in Computer Science No. 1993, 2001.
  10. Arturo Hernández Aguirre and Salvador Botello Rionda. Evolutionary Multi-Objective Optimization of Trusses, in Carlos A. Coello Coello and Gary B. Lamont (editors), Applications of Multi-Objective Evolutionary Algorithms, pp. 201--226, World Scientific, Singapore, 2004.
  11. Hernán Aguirre and Kiyoshi Tanaka. Robust Optimization by ε-Ranking on High Dimensional Objective Spaces, in Xiaodong Li, Michael Kirley, Mengjie Zhang, David G. Green, Victor Ciesielski, Hussein A. Abbass, Zbigniew Michalewicz, Tim Hendtlass, Kalyanmoy Deb, Kay Chen Tan, Jürgen Branke and Yuhui Shi (editors), Simulated Evolution and Learning, 7th International Conference, SEAL 2008, pp. 421--431, Springer. Lecture Notes in Computer Science Vol. 5361, Melbourne, Australia, December 7-10, 2008.
  12. Hernán Aguirre and Kiyoshi Tanaka. Many-Objective Optimization by Space Partitioning and Adaptive ε-Ranking on MNK-Landscapes, in Matthias Ehrgott, Carlos M. Fonseca, Xavier Gandibleux, Jin-Kao Hao and Marc Sevaux (editors), Evolutionary Multi-Criterion Optimization. 5th International Conference, EMO 2009, pp. 407--422, Springer. Lecture Notes in Computer Science Vol. 5467, Nantes, France, April 2009.
  13. Hernán Aguirre and Kiyoshi Tanaka. A Hybrid Scalarization and Adaptive ε-Ranking Strategy for Many-Objective Optimization. in Robert Schaefer, Carlos Cotta, Joanna Kolodziej and Günter Rudolph, (editors), Parallel Problem Solving from Nature--PPSN XI, 11th International Conference, Proceedings, Part II, pp. 11--20, Springer, Lecture Notes in Computer Science Vol. 6239, Kraków, Poland, September, 2010.
  14. Hernán Aguirre, Akira Oyama and Kiyoshi Tanaka. Adaptive ε-Sampling and ε-Hood for Evolutionary Many-Objective Optimization, in Robin C. Purshouse, Peter J. Fleming, Carlos M. Fonseca, Salvatore Greco and Jane Shaw (editors), Evolutionary Multi-Criterion Optimization, 7th International Conference, EMO 2013, pp. 322--336, Springer. Lecture Notes in Computer Science Vol. 7811, Sheffield, UK, March 19-22.
  15. Faez Ahmed and David Purdy. Controller Design of Active Suspension System with Terrain Preview Using Evolutionary Multi-objective Algorithms, in Kusum Deep, Atulya Nagar, Millie Pant and Jagdish Chand Bansal (editors), Proceedings of the International Conference on Soft Computing for Problem Solving (SocProS 2011), pp. 865--876, Springer. Advances in Intelligent and Soft Computing Vol. 131, December 20-22, 2011.
  16. A. Ahuja, S. Das and A. Pahwa. An AIS-ACO Hybrid Approach for Multi-Objective Distribution System Reconfiguration, in Bijaya Ketan Panigrahi, Ajith Abraham and Swagatam Das (editors), Computational Intelligence in Power Engineering, pp. 19--73, Springer, Studies in Computational Intelligence Vol. 302, Berlin, Germany, 2010, ISBN 978-3-642-14012-9.
  17. Sameer Alam, Lam T. Bui, Hussein A. Abbass and Michael Barlow. Pareto Meta-heuristics for Generating Safe Flight Trajectories Under Weather Hazards, in Tzai-Der Wang, Xiaodong Li, Shu-Heng Chen, Xufa Wang, Hussein Abbass, Hitoshi Iba, Guoliang Chen and Xin Yao (editors), Simulated Evolution and Learning, 6th International Conference, SEAL 2006, pp. 829--836, Springer. Lecture Notes in Computer Science Vol. 4247, Hefei, China, October 2006.
  18. Wissam A. Albukhanajer, Yaochu Jin, Johann A. Briffa and Godfried Williams. A Comparative Study of Multi-objective Evolutionary Trace Transform Methods for Robust Feature Extraction, in Robin C. Purshouse, Peter J. Fleming, Carlos M. Fonseca, Salvatore Greco and Jane Shaw (editors), Evolutionary Multi-Criterion Optimization, 7th International Conference, EMO 2013, pp. 573--586, Springer. Lecture Notes in Computer Science Vol. 7811, Sheffield, UK, March 19-22.
  19. Rafael Alcalá, Jesús Alcalá-Fdez, María José Gacto and Francisco Herrera. On the Usefulness of MOEAs for Getting Compact FRBSs Under Parameter Tuning and Rule Selection, in Ashish Ghosh, Satchidananda Dehuri and Susmita Ghosh, editors, Multi-objective Evolutionary Algorithms for Knowledge Discovery from Data Bases, pp. 91--107, Springer, Berlin, 2008, ISBN 978-3-540-77466-2.
  20. Richard Allmendinger and Joshua Knowles. ‘Hang On a Minute’: Investigations on the Effects of Delayed Objective Functions in Multiobjective Optimization, in Robin C. Purshouse, Peter J. Fleming, Carlos M. Fonseca, Salvatore Greco and Jane Shaw (editors), Evolutionary Multi-Criterion Optimization, 7th International Conference, EMO 2013, pp. 6--20, Springer. Lecture Notes in Computer Science Vol. 7811, Sheffield, UK, March 19-22, 2013.
  21. Maria João Alves and João Paulo Costa. An Evolutionary Algorithm to Estimate the Nadir Point in MOLP, in Matthias Ehrgott, Carlos M. Fonseca, Xavier Gandibleux, Jin-Kao Hao and Marc Sevaux (editors), Evolutionary Multi-Criterion Optimization. 5th International Conference, EMO 2009, pp. 540--553, Springer. Lecture Notes in Computer Science Vol. 5467, Nantes, France, April 2009.
  22. Maria João Alves. Using MOPSO to Solve Multiobjective Bilevel Linear Problems, in Marco Dorigo, Mauro Birattari, Christian Blum, Anders Lyhne Christensen, Andries P. Engelbrecht, Roderich Groβ and Thomas Stützle (editors), Swarm Intelligence, 8th International Conference, ANTS 2012, pp. 332--339, Springer. Lecture Notes in Computer Science Vol. 7461, Brussels, Belgium, September 12-14, 2012.
  23. P. Amato and M. Farina. An ALife-Inspired Evolutionary Algorithm for Dynamic Multiobjective Optimization Problems, in F. Hoffmann, M. Köppen, F. Klawonn and R. Roy (editors), Advances in Soft Computing, Springer, pp. 113--125, 2005.
  24. Lionel Amodeo, Haoxun Chen and Aboubacar El Hadji. Supply Chain Inventory Optimisation with Multiple Objectives: An Industrial Case Study, in Andreas Fink and Franz Rothlauf (editors), Advances in Computational Intelligence in Transport, Logistics and Supply Chain Management, pp. 211--230, Springer, Studies in Computational Intelligence Vol. 144, 2008.
  25. Lionel Amodeo, Christian Prins and David Ricardo Sánchez. Comparison of Metaheuristic Approaches for Multi-objective Simulation-Based Optimization in Supply Chain Inventory Management. in Mario Giacobini, Anthony Brabazon, Stefano Cagnoni, Gianni A. Di Caro, Anikó Ekárt, Anna Isabel Esparcia-Alcázar, Muddassar Farooq, Andreas Fink and Penousal Machado, (editors), Applications of Evolutionary Computing (EvoWorkshops 2009), pp. 798--807, Springer, Lecture Notes in Computer Science, Vol. 5484, Heidelberg, Germany, 2009.
  26. Johan Andersson and Petter Krus. Multiobjective Optimization of Mixed Variable Design Problems, In Eckart Zitzler, Kalyanmoy Deb, Lothar Thiele, Carlos A. Coello Coello and David Corne, editors, First International Conference on Evolutionary Multi-Criterion Optimization, pages 624--638, Springer-Verlag. Lecture Notes in Computer Science No. 1993, 2001
  27. Johan Andersson. Design of Fluid Power Systems using a Multi Objective Genetic Algorithm, in Carlos A. Coello Coello and Gary B. Lamont (editors), Applications of Multi-Objective Evolutionary Algorithms, pp. 483--503, World Scientific, Singapore, 2004.
  28. Johan Andersson. Sensitivity Analysis In Multi-Objective Evolutionary Design, in Kay Chen Tan, Meng Hiot Lim, Xin Yao and Lipo Wang, (editors), Recent Advances in Simulated Evolution and Learning, pp. 386-405, World Scientific, Singapore, 2004.
  29. Kiam Heong Ang, Gregory Chong and Yun Li. Visualization Technique for Analyzing Non-dominant Pareto Optimality, in Kay Chen Tan, Meng Hiot Lim, Xin Yao and Lipo Wang (editors), Recent Advances in Simulated Evolution and Learning, pp. 327--346, World Scientific, Singapore, 2004.
  30. Ji Hua Ang, Chi Keong Goh, Eu Jin Teoh and Kay Chen Tan. Designing a Recurrent Neural Network-based Controller for Gyro-Mirror Line-of-Sight Stabilization System using an Artificial Immune Algorithm, in Lakhmi C. Jain, Vasile Palade and Dipti Srinivasan (editors), Advances in Evolutionary Computing for System Design, pp. 189--209, Springer, Studies in Computational Intelligence, Volume 66, Berlin, 2007.
  31. Daniel Angus. Population-Based Ant Colony Optimisation for Multi-objective Function Optimisation. in Marcus Randall, Hussein A. Abbass and Janet Wiles, (editors), Progress in Artificial Life, Third Australian Conference (ACAL'2007), pp. 232--244, Springer. Lecture Notes in Computer Science, Vol. 4828, Heidelberg, Germany, 2007.
  32. Daniel Angus and Adam Deller. Computational Intelligence in Radio Astronomy: Using Computational Intelligence Techniques to Tune Geodesy Models, in Xiaodong Li, Michael Kirley, Mengjie Zhang, David G. Green, Victor Ciesielski, Hussein A. Abbass, Zbigniew Michalewicz, Tim Hendtlass, Kalyanmoy Deb, Kay Chen Tan, Jürgen Branke and Yuhui Shi (editors), Simulated Evolution and Learning, 7th International Conference, SEAL 2008, pp. 615--624, Springer. Lecture Notes in Computer Science Vol. 5361, Melbourne, Australia, December 7-10, 2008.
  33. Daniel Angus. Niching for Ant Colony Optimisation, in Andrew Lewis, Sanaz Mostaghim and Marcus Randall (editors), Biologically-Inspired Optimisation Methods, pp. 165--188, Springer, 2009. ISBN 978-3-642-01261-7 .
  34. L. Araujo. Multiobjective Genetic Programming for Natural Language Parsing and Tagging, in Thomas Philip Runarsson, Hans-Georg Beyer, Edmund Burke, Juan J. Merelo-Guervós, L. Darrell Whitley and Xin Yao (editors), Parallel Problem Solving from Nature - PPSN IX, 9th International Conference, pp. 433--442, Springer. Lecture Notes in Computer Science Vol. 4193, Reykjavik, Iceland, September 2006.
  35. Andrea Arcuri, David Robert White, John Clark and Xin Yao. Multi-objective Improvement of Software Using Co-evolution and Smart Seeding, in Xiaodong Li, Michael Kirley, Mengjie Zhang, David Green, Vic Ciesielski, Hussein Abbass, Zbigniew Michalewicz, Tim Hendtlass, Kalyanmoy Deb, Kay Chen Tan, Jürgen Branke and Yuhui Shi (editors), Simulated Evolution and Learning, 7th International Conference, SEAL 2008, pp. 61--70, Springer. Lecture Notes in Computer Science Vol. 5361, Melbourne, Australia, December 7-10, 2008.
  36. Alfredo Arias Montaño and Carlos A. Coello Coello. pMODE-LS+SS: An Effective and Efficient Parallel Differential Evolution Algorithm for Multi-Objective Optimization, in Robert Schaefer, Carlos Cotta, Joanna Kolodziej and Günter Rudolph (Editors), Parallel Problem Solving from Nature--PPSN XI, 11th International Conference, Proceedings, Part II, pp. 21--30, Springer, Lecture Notes in Computer Science Vol. 6239, Kraków, Poland, September 2010.
  37. Alfredo Arias Montaño, Carlos A. Coello Coello and Efrén Mezura-Montes. Evolutionary Algorithms Applied to Multi-Objective Aerodynamic Shape Optimization, in Slawomir Koziel and Xin-She Yang (editors), Computational Optimization, Methods and Algorithms, Chapter 10, pp. 211--240, Springer, Berlin, Germany, 2011, ISBN 978-3-642-20858-4.
  38. Ragnar Arnason. Fisheries Management, in Andrés Weintraub, Carlos Romero, Trond Bjorndal, Rafael Epstein and Jaime Miranda (editors), Handbook Of Operations Research In Natural Resources, pp. 157--179, Springer, International Series in Operations Research & Management Science Vol. 99, Berlin, 2008.
  39. María Arsuaga-Ríos, Miguel A. Vega-Rodríguez and Francisco Prieto-Castrillo. Multi-Objective Artificial Bee Colony for Scheduling in Grid Environments, in 2011 IEEE Symposium on Swarm Intelligence (SIS 2011), pp. 206--212, IEEE Press, Paris, France, April 11-15, 2011.
  40. María Arsuaga-Ríos and Francisco Prieto-Castrillo and Miguel A. Vega-Rodríguez. Small-World Optimization Applied to Job Scheduling on Grid Environments from a Multi-Objective Perspective, in Cecilia Di Chio et al. (editors), Applications of Evolutionary Computation, EvoApplications 2012: EvoCOMNET, EvoCOMPLEX, EvoFIN, EvoGAMES, EvoHOT, EvoIASP, EvoNUM, EvoPAR, EvoRISK, EvoSTIM, and EvoSTOC, pp. 42--51, Springer. Lecture Notes in Computer Science Vol. 7248, Málaga, Spain, April 11-13, 2012.
  41. María Arsuaga-Ríos and Miguel A. Vega-Rodríguez. Multi-objective Firefly Algorithm for Energy Optimization in Grid Environments, in Marco Dorigo, Mauro Birattari, Christian Blum, Anders Lyhne Christensen, Andries P. Engelbrecht, Roderich Groβ and Thomas Stützle (editors), Swarm Intelligence, 8th International Conference, ANTS 2012, pp. 350--351, Springer. Lecture Notes in Computer Science Vol. 7461, Springer. Lecture Notes in Computer Science Vol. 7461, Brussels, Belgium, September 12-14, 2012.
  42. Md. Asafuddoula, Tapabrata Ray and Ruhul Sarker. A Decomposition Based Evolutionary Algorithm for Many Objective Optimization with Systematic Sampling and Adaptive Epsilon Control, in Robin C. Purshouse, Peter J. Fleming, Carlos M. Fonseca, Salvatore Greco and Jane Shaw (editors), Evolutionary Multi-Criterion Optimization, 7th International Conference, EMO 2013, pp. 413--427, Springer. Lecture Notes in Computer Science Vol. 7811, Sheffield, UK, March 19-22, 2013.
  43. Giueppe Ascia, Vincenzo Catania, Alessandro G. Di Nuovo, Maurizio Palesi and Davide Patti. Computational Intelligence to Speed-Up Multi-Objective Design Space Exploration of Embedded Systems, In Lam Thu Bui and Sameer Alam, editors, Multi-Objective Optimization in Computational Intelligence: Theory and Practice, pp. 265--299, Information Science Reference, Hershey, PA, USA, 2008, ISBN 978-1-59904-498-9 .
  44. S.S. Askar and A. Tiwari. Multi-Objective Optimisation Problems: A Symbolic Algorithm for Performance Measurement of Evolutionary Computing Techniques, in Matthias Ehrgott, Carlos M. Fonseca, Xavier Gandibleux, Jin-Kao Hao and Marc Sevaux (editors), Evolutionary Multi-Criterion Optimization. 5th International Conference, EMO 2009, pp. 169--182, Springer. Lecture Notes in Computer Science Vol. 5467, Nantes, France, April 2009.
  45. Tehseen Aslam, Philip Hedenstierna, Amos H. C. Ng and Lihui Wang. Multi-Objective Optimisation in Manufacturing Supply Chain Systems Design: A Comprehensive Survey and New Directions, in Lihui Wang, Amos H. C. Ng and Kalyanmoy Deb (editors), Multi-objective Evolutionary Optimisation for Product Design and Manufacturing, Chapter 2, pp. 35--70, Springer, London, UK, 2011, ISBN 978-0-85729-617-7.
  46. Anne Auger, Johannes Bader and Dimo Brockhoff. Theoretically Investigating Optimal μ-Distributions for the Hypervolume Indicator: First Results for Three Objectives. in Robert Schaefer, Carlos Cotta, Joanna Kolodziej and Günter Rudolph (editors) Parallel Problem Solving from Nature--PPSN XI, 11th International Conference, Proceedings, Part I, pp. 586--596, Springer, Lecture Notes in Computer Science Vol. 6238, Kraków, Poland, September, 2010.
  47. Prabhat Avasare, Chantal Ykman-Couvreur, Geert Vanmeerbeeck, Giovanni Mariani, Gianluca Palermo, Cristina Silvano and Vittorio Zaccaria. Design Space Exploration Supporting Run-Time Resource Management, in Cristina Silvano, William Fornaciari and Eugenio Villar (editors), Multi-objective Design Space Exploration of Multiprocessor SoC Architectures, The MULTICUBE Approach, Chapter 5, pp. 93--107, Springer, New York, USA, 2011, ISBN 978-1-4419-8836-2.
  48. Gideon Avigad, Amiram Moshaiov and Neima Brauner. MOEA-Based Approach to Delayed Decisions for Robust Conceptual Design, in Franz Rothlauf et al. (editors), Applications of Evolutionary Computing. Evoworkshops 2005: EvoBIO, EvoCOMNET, EvoHOT, EvoIASP, EvoMUSART and EvoSTOC, pp. 584--589, Springer. Lecture Notes in Computer Science Vol. 3449, Lausanne, Switzerland, March/April 2005.
  49. Gideon Avigad. Evolutionary Multi-Multi-Objective Optimization - EMMOO, in Chi-Keong Goh, Yew-Soon Ong and Kay Chen Tan (editors), Multi-Objective Memetic Algorithms, chapter 1, pp. 3--26, Springer, Studies in Computational Intelligence, Vol. 171, Berlin, Germany, 2009. ISBN 978-3-540-88050-9.
  50. Gideon Avigad, Erella Eisenstadt and Valery Y. Glizer. Evolving a Pareto Front for an Optimal Bi-Objective Robust Interception Problem with Imperfect Information, in Oliver Schütze, Carlos A. Coello Coello, Alexandru-Adrian Tantar, Emilia Tantar, Pascal Bouvry, Pierre Del Moral and Pierrick Legrand (editors), EVOLVE - A Bridge between Probability, Set Oriented Numerics, and Evolutionary Computation II, pp. 121--135, Springer, Advances in Intelligent Systems and Computing Vol. 175, Berlin, Germany, 2012, ISBN 978-3-642-31519-0.
  51. Gideon Avigad, Erella Eisenstadt and Valery Y. Glizer. Solution of Multi-objective Min-Max and Max-Min Games by Evolution, in Robin C. Purshouse, Peter J. Fleming, Carlos M. Fonseca, Salvatore Greco and Jane Shaw (editors), Evolutionary Multi-Criterion Optimization, 7th International Conference, EMO 2013, pp. 246--260, Springer. Lecture Notes in Computer Science Vol. 7811, Sheffield, UK, March 19-22, 2013.
  52. B

  53. Norio Baba and Hisashi Handa. COMMONS GAME Made More Exciting by an Intelligent Utilization of the Two Evolutionary Algorithms, in Norio Baba, Lakhmi C. Jain and Hisashi Handa (editors), Advanced Intelligent Paradigms in Computer Games, pp. 1--16, Springer, Studies in Computational Intelligence Vol. 71, 2007.
  54. Tomas Bäck, Lars Willmes and Peter Krause. Evolution Strategies: Bioinspired Optimization for Engineering, in Bogdan Filipic and Jurij Silc (editors), Bioinspired Optimization Methods and Their Applications. Proceedings of the International Conference on Bioinspired Optimization Methods and their Applications, BIOMA 2004, pp. 3--17, Jožef Stefan Institute, Ljubljana, Slovenia, October 2004.
  55. Jaideep Badduri, Rangaprasad Arun Srivatsan, Gurunathan Saravana Kumar and Sandipan Bandyopadhyay. Coupler-Curve Synthesis of a Planar Four-Bar Mechanism Using NSGA-II, in Lam Thu Bui, Yew Soon Ong, Nguyen Xuan Hoai, Hisao Ishibuchi and Ponnuthurai Nagaratnam Suganthan (editors), Simulated Evolution and Learning, 9th International Conference, SEAL 2012, pp. 460--469, Springer. Lecture Notes in Computer Science Vol. 7673, Hanoi, Vietnam, December 16-19, 2012.
  56. Johannes Bader, Dimo Brockhoff, Samuel Welten and Eckart Zitzler. On Using Populations of Sets in Multiobjective Optimization, in Matthias Ehrgott, Carlos M. Fonseca, Xavier Gandibleux, Jin-Kao Hao and Marc Sevaux (editors), Evolutionary Multi-Criterion Optimization. 5th International Conference, EMO 2009, pp. 140--154, Springer. Lecture Notes in Computer Science Vol. 5467, Nantes, France, April 2009.
  57. Johannes Bader, Kalyanmoy Deb and Eckart Zitzler. Faster Hypervolume-Based Search Using Monte Carlo Sampling. in Matthias Ehrgott, Boris Naujoks, Theodor J. Stewart and Jyrki Wallenius, (editors), Multiple Criteria Decision Making for Sustainable Energy and Transportation Systems, pp. 313--326, Springer, Lecture Notes in Economics and Mathematical Systems Vol. 634, Heidelberg, Germany, 2010.
  58. Johannes Bader and Eckart Zitzler. A Hypervolume-Based Optimizer for High-Dimensional Objective Spaces, in Dylan Jones, Mehrdad Tamiz and Jana Ries (Editors), New Developments in Multiple Objective and Goal Programming, pp. 35--54, Springer. Lecture Notes in Economics and Mathematical Systems Vol. 638, Berlin, 2010.
  59. Khaled M. S. Badran and Peter Rockett. Integrating Categorical Variables with Multiobjective Genetic Programming for Classifier Construction, in Michael O'Neill, Leonardo Vanneschi, Steven Gustafson, Anna Isabel Esparcia Alcázar, Ivanoe De Falco, Antonio Della Cioppa and Ernesto Tarantino (editors), Genetic Programming, 11th European Conference, EuroGP 2008, pp. 301-311, Springer, Lecture Notes in Computer Science Vol. 4971, Naples, Italy, March 2008.
  60. Tapan P. Bagchi. Pareto-Optimal Solutions for Multi-objective Production Scheduling Problems. In Eckart Zitzler, Kalyanmoy Deb, Lothar Thiele, Carlos A. Coello Coello and David Corne, editors, First International Conference on Evolutionary Multi-Criterion Optimization, pages 458-471. Springer-Verlag. Lecture Notes in Computer Science No. 1993, 2001.
  61. Flavio Baita, Francesco Mason, Carlo Poloni and Walter Ukovich. Genetic algorithm with redundancies for the vehicle scheduling problem. In J. Biethahn and Volker Nissen, editors, Evolutionary Algorithms in Management Applications, pages 341-353. Springer-Verlag, Berlin, 1995.
  62. Jerzy Balicki and Zybmunt Kitowski. Multicriteria evolutionary algorithm with tabu search for task assignment. In Eckart Zitzler, Kalyanmoy Deb, Lothar Thiele, Carlos A. Coello Coello and David Corne, editors, First International Conference on Evolutionary Multi-Criterion Optimization, pages 373-384. Springer-Verlag. Lecture Notes in Computer Science No. 1993, 2001.
  63. Richard Balling. City and Regional Planning Via a MOEA: Lessons Learned, in Carlos A. Coello Coello and Gary B. Lamont (editors), Applications of Multi-Objective Evolutionary Algorithms, pp. 227--245, World Scientific, Singapore, 2004.
  64. Sunith Bandaru and Kalyanmoy Deb. A Dimensionally-Aware Genetic Programming Architecture for Automated Innovization, in Robin C. Purshouse, Peter J. Fleming, Carlos M. Fonseca, Salvatore Greco and Jane Shaw (editors), Evolutionary Multi-Criterion Optimization, 7th International Conference, EMO 2013, pp. 513--527, Springer. Lecture Notes in Computer Science Vol. 7811, Sheffield, UK, March 19-22, 2013.
  65. Susmita Bandyopadhyay and Arnab Das. Proposing Modified NSGA-II to Solve a Job Sequencing Problem, in M. Aswatha Kumar, R. Selvarani and T. V. Suresh Kumar (editors), Proceedings of International Conference on Advances in Computing, pp. 387--392, Springer. Advances in Intelligent Systems and Computing Vol. 174, 2013.
  66. Mohua Banerjee, Sushmita Mitra and Ashish Anand. Feature Selection Using Rough Sets, in Yaochu Jin (Editor), Multi-Objective Machine Learning, pp. 3--20, Springer. Studies in Computational Intelligence, Volume 16, Berlin, 2006.
  67. R. Baños, C. Gil, J. Gómez and J. Ortega. Performance Analysis of Parallel Strategies for Bi-objective Network Partitioning, in Ashutosh Tiwari, Joshua Knowles, Erel Avineri, Keshav Dahal and Rajkumar Roy (Editors), Applications of Soft Computing. Recent Trends, pp. 291--300, Springer-Verlag, Berlin, 2006.
  68. Claude Baron, Samuel Rochet and Daniel Esteve. GESOS: A Multi-Objective Genetic Tool for Project Management Considering Technical and Non-Technical Constraints, in Max Bramer and Vladan Devedzic (editors), Artificial Intelligence Applications and Innovations, pp. 329--342, Kluwer Academic Publishers, Boston/Dordrecht/London, 2004.
  69. Julio Barrera and Carlos A. Coello Coello. A Review of Particle Swarm Optimization Methods used for Multimodal Optimization. in Chee-Peng Lim, Lakhmi C. Jain and Satchidananda Dehuri, (editors), Innovations in Swarm Intelligence, chapter 2, pp. 9--37, Springer-Verlag, Berlin, Germany, 2009. ISBN 978-3-642-04225-6.
  70. Julio Barrera and Carlos A. Coello Coello. Test Function Generators for Assessing the Performance of PSO Algorithms in Multimodal Optimization, in Bijaya Ketan Panigrahi, Yuhui Shi and Meng-Hiot Lim (editors), Handbook of Swarm Intelligence. Concepts, Principles and Applications, pp. 89--117, Springer-Verlag, Belin, Germany, 2011. ISBN 978-3-642-17389-9 .
  71. Carlos Barrico and Carlos Henggeler Antunes. An Evolutionary Approach for Assessing the Degree of Robustness of Solutions to Multi-Objective Models, in Shengxiang Yang, Yew Soon Ong and Yaochu Jin (editors), Evolutionary Computation in Dynamic and Uncertain Environments, pp. 565--582, Springer, 2007, ISBN 978-3-540-49772-1.
  72. Carlos Barrico, Carlos Henggeler Antunes and Dulce Fernão Pires. Robustness Analysis in Evolutionary Multi-Objective Optimization Applied to VAR Planning in Electrical Distribution Networks. in Carlos Cotta and Peter Cowling, (editors), Evolutionary Computation in Combinatorial Optimization. 9th European Conference, EvoCOP 2009, pp. 216--227, Springer. Lecture Notes in Computer Science, Vol. 5482, Tübigen, Germany, April, 2009.
  73. Aniruddha Basak, Siddharth Pal, V. Ravikumar Pandi, B.K. Panigrahi, M.K. Mallick and Ankita Mohapatra. A Novel Multi-Objective Formulation for Hydrothermal Power Scheduling Based on Reservoir End Volume Relaxation, in Bijaya Ketan Panigrahi, Swagatam Das, Ponnuthurai Nagaratnam Suganthan and Subhransu Sekhar Dash (editors), Swarm, Evolutionary, and Memetic Computing, First International Conference on Swarm, Evolutionary and Memetic Computing, SEMCCO 2010, pp. 718--726, Springer-Verlag. Lecture Notes in Computer Science Vol. 6466, Chennai, India, December 16-18, 2010.
  74. Matthieu Basseur, Franck Seynhaeve and El-Ghazali Talbi. A Cooperative Metaheuristic Applied to Multi-Objective Flow-Shop Scheduling Problem, in Nadia Nedjah and Luiza de Macedo Mourelle (editors), Real-World Multi-Objective System Engineering, pp. 139--162, Nova Science Publishers, New York, 2005.
  75. Carmelo J.A. Bastos-Filho and Péricles B.C. Miranda. Multi-Objective Particle Swarm Optimization Using Speciation, in 2011 IEEE Symposium on Swarm Intelligence (SIS 2011), pp. 164--169, IEEE Press, Paris, France, April 11-15, 2011.
  76. Ricardo P. Beausoleil Delgado. Multiple Criteria Scatter Search, in Jorge Pinho de Sousa (Editor), Proceedings of the 4th Metaheuristics International Conference (MIC'2001), pp. 539--543, Porto, Portugal, Program Operational Ciencia, Tecnologia, Inovaçao do Quadro Comunitário de Apoio III de Fundaçao para a Ciencia e Tecnologia, July 2001
  77. Ricardo P. Beausoleil. "MOSS-II" Tabu/Scatter Search for Nonlinear Multiobjective Optimization, in Patrick Siarry and Zbigniew Michalewicz (editors), Advances in Metaheuristic Methods for Hard Optimization, pp. 39-67, Springer, Berlin, 2008, ISBN 978-3-540-72959-4 .
  78. Ying L. Becker, Harold Fox and Peng Fei. An Empirical Study of Multi-Objective Algorithms for Stock Ranking, in Rick L. Riolo, Terence Soule and Bill Worzel (editors), Genetic Programming Theory and Practice V, pp. 241-262, Springer, Genetic and Evolutionary Computation Vol. 5, Ann Arbor, May 2007.
  79. L. Belguerras and L. Hadjout. Multi-objective Design Optimization of Slotless PM Motors Using Genetic Algorithms Based on Analytical Field Calculation, in Slawomir Wiak and Ewa Napieralska-Juszczak (editors), Computational Methods for the Innovative Design of Electrical Devices, Chapter 2, pp. 19--37, Springer. Studies in Computational Intelligence Vol. 327, Heidelberg, Germany, 2011, ISBN 978-3-642-16224-4.
  80. Lyes Benyoucef and Xiaolan Xie. Supply Chain Design Using Simulation-Based NSGA-II Approach, in Lihui Wang, Amos H.C. Ng and Kalyanmoy Deb (editors), Multi-objective Evolutionary Optimisation for Product Design and Manufacturing, Chapter 17, pp. 455--491, Springer, London, UK, 2011, ISBN 978-0-85729-617-7.
  81. Benoit Beraud, Cyrille Lemoine and Jean-Philippe Steyer. Multiobjective Genetic Algorithms for the Optimisation of Wastewater Treatment Processes, in Maria do Carmo Nicoletti and Lakhmi C. Jain (editors), Computational Intelligence Techniques for Bioprocess Modelling, Supervision and Control, pp. 163--195, Springer, Studies in Computational Intelligence (SCI), Berlin, 2009, ISBN 978-3-642-01887-9.
  82. Ester Bernadó i Mansilla and Josep M. Garrell i Guiu. MOLeCS: Using Multiobjective Evolutionary Algorithms for Learning. In Eckart Zitzler, Kalyanmoy Deb, Lothar Thiele, Carlos A. Coello Coello and David Corne, editors, First International Conference on Evolutionary Multi-Criterion Optimization, pp. 696--710. Springer-Verlag. Lecture Notes in Computer Science No. 1993, 2001.
  83. Fernando Bernardes de Oliveira, Donald Davendra and Frederico Gadelha Guimarães. Multi-Objective Differential Evolution on the GPU with C-CUDA, in Václav Snásel, Ajith Abraham and Emilio S. Corchado (editors), Soft Computing Models in Industrial and Environmental Applications, 7th International Conference (SOCO'12), pp. 123--132, Springer. Advances in Intelligent Systems and Computing Vol. 188, Ostrava, Czech Republic, 2013.
  84. P. Bernardi, K. Christou, M. Grosso, M.K. Michael, E. Sánchez and M. Sonza Reorda. Exploiting MOEA to Automatically Generate Test Programs for Path-Delay Faults in Microprocessors, in Mario Giacobini et al. (editors), Applications of Evolutionary Computing. EvoWorkshops 2008: EvoCOMNET, EvoFIN, EvoHOT, EvoIASP, EvoMUSART, EvoNUM, EvoSTOC and EvoTransLog, pp. 224--234, Springer. Lecture Notes in Computer Science Vol. 4974, Naples, Italy, March 2008.
  85. Heder S. Bernardino and Helio J. C. Barbosa. Artificial Immune Systems for Optimization, in Raymond Chiong (Editor), Nature-Inspired Algorithms for Optimisation, pp. 389--411, Springer, Berlin, ISBN 978-3-642-00266-3, 2009.
  86. Víctor Berrocal-Plaza, Miguel A. Vega-Rodríguez, Juan M. Sánchez-Pérez and Juan A. Gómez-Pulido. Solving the Location Areas Scheme in Realistic Networks by Using a Multi-objective Algorithm, in Anna I. Esparcia-Alcázar et al. (editors), Applications of Evolutionary Computation, 16th European Conference, EvoApplications 2013, pp. 72--81, Springer. Lecture Notes in Computer Science Vol. 7835, Vienna, Austria, April 3-5, 2013.
  87. Nicola Beume, Boris Naujoks, Mike Preuss, Günter Rudolph and Tobias Wagner. Effects of 1-Greedy S-Metric-Selection on Innumerably Large Pareto Fronts, in Matthias Ehrgott, Carlos M. Fonseca, Xavier Gandibleux, Jin-Kao Hao and Marc Sevaux (editors), Evolutionary Multi-Criterion Optimization. 5th International Conference, EMO 2009, pp. 21--35, Springer. Lecture Notes in Computer Science Vol. 5467, Nantes, France, April 2009.
  88. Nicola Beume, Marco Laumanns and Günter Rudolph. Convergence Rates of (1+1) Evolutionary Multiobjective Optimization Algorithms. in Robert Schaefer, Carlos Cotta, Joanna Kolodziej and Günter Rudolph (editors) Parallel Problem Solving from Nature--PPSN XI, 11th International Conference, Proceedings, Part I, pp. 597--606, Springer, Lecture Notes in Computer Science Vol. 6238, Kraków, Poland, September, 2010.
  89. Nicola Beume, Marco Laumanns and Günter Rudolph. Convergence Rates of SMS-EMOA on Continuous Bi-objective Problem Classes, in Hans-Georg Beyer and William B. Langdon (editors), Proceedings of the 2011 ACM SIGEVO Foundations of Genetic Algorithms XI (FOGA'2011), pp. 243--251, ACM Press, Schwarzenberg, Austria, January 5--9, 2011.
  90. Leonardo C.T. Bezerra, Manuel López-Ibáñez and Thomas Stützle. Automatic Generation of Multi-objective ACO Algorithms for the Bi-objective Knapsack, in Marco Dorigo, Mauro Birattari, Christian Blum, Anders Lyhne Christensen, Andries P. Engelbrecht, Roderich Groβ and Thomas Stützle (editors), Swarm Intelligence, 8th International Conference, ANTS 2012, pp. 37--48, Springer. Lecture Notes in Computer Science Vol. 7461, Brussels, Belgium, September 12-14, 2012.
  91. Leonardo C.T. Bezerra, Manuel López-Ibáñez and Thomas Stützle. An Analysis of Local Search for the Bi-objective Bidimensional Knapsack Problem, in Martin Middendorf and Christian Blum (editors), Evolutionary Computation in Combinatorial Optimization, 13th European Conference, pp. 85--96, Springer. Lecture Notes in Computer Science Vol. 7832, Vienna, Austria, April 3-5, 2013.
  92. Urvesh Bhowan, Mengjie Zhang and Mark Johnston. Genetic Programming for Classification with Unbalanced Data. in Anna Isabel Esparcia-Alcázar, Anikó Ekárt, Sara Silva, Stephen Dignum and A. Sima Uyar (editors), Genetic Programming, 13th European Conference, EuroGP 2010, pp. 1--13, Springer. Lecture Notes in Computer Science, Vol. 6021, Istambul, Turkey, April, 2010.
  93. Stefan Bleuler, Johannes Bader, Eckart Zitzler . Reducing Bloat in GP with Multiple Objectives , in Joshua Knowles, David Corne and Kalyanmoy Deb (Editors), Multi-Objective Problem Solving from Nature: From Concepts to Applications, pp. 177--200, Springer, Berlin, 2008, ISBN 978-3-540-72963-1.
  94. Anna L. Blumel, Evan J. Hughes and Brian A. White. Multi-objective Evolutionary Design of Fuzzy Autopilot Controller. In Eckart Zitzler, Kalyanmoy Deb, Lothar Thiele, Carlos A. Coello Coello and David Corne, editors, First International Conference on Evolutionary Multi-Criterion Optimization, pages 668-680. Springer-Verlag. Lecture Notes in Computer Science No. 1993, 2001.
  95. Claude Bouvy, Christoph Kausch, Mike Preuss and Frank Henrich. On the Potential of Multi-objective Optimization in the Design of Sustainable Energy Systems. in Matthias Ehrgott, Boris Naujoks, Theodor J. Stewart and Jyrki Wallenius, (editors), Multiple Criteria Decision Making for Sustainable Energy and Transportation Systems, pp. 3--12, Springer, Lecture Notes in Economics and Mathematical Systems Vol. 634, Heidelberg, Germany, 2010.
  96. Emmanuel Boutillon, Christian Roland and Marc Sevaux. Probability-Driven Simulated Annealing for Optimizing Digital FIR Filters, in Carlos Cotta, Marc Sevaux and Kenneth Sörensen (editors), Adaptive and Multilevel Metaheuristics, pp. 77--93, Springer, Studies in Computational Intelligence Vol. 136, Berlin, 2008.
  97. René A. Van den Braembussche. Numerical Optimization for Advanced Turbomachinery Design. In Dominique Thévenin and Gábor Janiga, (editors), Optimization and Computational Fluid Dynamics, chapter 6, pp. 147--189. Springer-Verlag, Berlin, 2008.
  98. Antônio Pádua Braga, Ricardo H.C. Takahashi, Marcelo Azevedo Costa and Roselito de Albuquerque Teixeira. Multi-Objective Algorithms for Neural Networks Learning, in Yaochu Jin (Editor), Multi-Objective Machine Learning, pp. 151--171, Springer. Studies in Computational Intelligence, Volume 16, Berlin, 2006.
  99. Jürgen Branke and Kalyanmoy Deb. Integrating User Preferences into Evolutionary Multi-Objective Optimization, in Yaochu Jin (editor), Knowledge Incorporation in Evolutionary Computation, Springer, pp. 461--477, Berlin Heidelberg, 2005, ISBN 3-540-22902-7 .
  100. Jürgen Branke and Sanaz Mostaghim. About Selecting the Personal Best in Multi-Objective Particle Swarm Optimization, in Thomas Philip Runarsson, Hans-Georg Beyer, Edmund Burke, Juan J. Merelo-Guervós, L. Darrell Whitley and Xin Yao (editors), Parallel Problem Solving from Nature - PPSN IX, 9th International Conference, pp. 523--532, Springer. Lecture Notes in Computer Science Vol. 4193, Reykjavik, Iceland, September 2006.
  101. Jürgen Branke. Consideration of Partial User Preferences in Evolutionary Multiobjective Optimization, in Jürgen Branke, Kalyanmoy Deb, Kaisa Miettinen and Roman Slowinski (editors), Multiobjective Optimization. Interactive and Evolutionary Approaches, pp. 157--178, Springer. Lecture Notes in Computer Science Vol. 5252, Berlin, Germany, 2008.
  102. Jürgen Branke, Salvatore Greco, Roman Slowinski and Piotr Zielniewicz. Interactive Evolutionary Multiobjective Optimization Using Robust Ordinal Regression, in Matthias Ehrgott, Carlos M. Fonseca, Xavier Gandibleux, Jin-Kao Hao and Marc Sevaux (editors), Evolutionary Multi-Criterion Optimization. 5th International Conference, EMO 2009, pp. 554--568, Springer. Lecture Notes in Computer Science Vol. 5467, Nantes, France, April 2009.
  103. Amaury T. Brasil Filho, Plácido R. Pinheiro and André L.V. Coelho. Towards the Early Diagnosis of Alzheimer's Disease via a Multicriteria Classification Model, in Matthias Ehrgott, Carlos M. Fonseca, Xavier Gandibleux, Jin-Kao Hao and Marc Sevaux (editors), Evolutionary Multi-Criterion Optimization. 5th International Conference, EMO 2009, pp. 393--406, Springer. Lecture Notes in Computer Science Vol. 5467, Nantes, France, April 2009.
  104. Mihaela Elena Breaban. Multiobjective Projection Pursuit for Semisupervised Feature Extraction, in Anna I. Esparcia-Alcázar et al. (editors), Applications of Evolutionary Computation, 16th European Conference, EvoApplications 2013, pp. 324--333, Springer. Lecture Notes in Computer Science Vol. 7835, Vienna, Austria, April 3-5, 2013.
  105. Davide Bresolin, Fernando Jiménez, Gracia Sánchez and Guido Sciavicco. Finite Satisfiability of Proposional Interval Logic Formulas with Multi-Objective Evolutionary Algorithms, in Frank Neumann and Kenneth De Jong (editors), Proceedings of the 2013 ACM Workshop on Foundations of Genetic Algorithms (FOGA XII), pp. 25--36, ACM Press, Adelaide, Australia, January 16-20, 2013.
  106. Karl Bringmann and Tobias Friedrich. Approximating the Least Hypervolume Contributor: NP-Hard in General, But Fast in Practice, in Matthias Ehrgott, Carlos M. Fonseca, Xavier Gandibleux, Jin-Kao Hao and Marc Sevaux (editors), Evolutionary Multi-Criterion Optimization. 5th International Conference, EMO 2009, pp. 6--20, Springer. Lecture Notes in Computer Science Vol. 5467, Nantes, France, April 2009.
  107. Karl Bringmann and Tobias Friedrich. Tight Bounds for the Approximation Ratio of the Hypervolume Indicator. in Robert Schaefer, Carlos Cotta, Joanna Kolodziej and Günter Rudolph, (editors), Parallel Problem Solving from Nature--PPSN XI, 11th International Conference, Proceedings, Part I, pp. 607--616, Springer, Lecture Notes in Computer Science Vol. 6238, Kraków, Poland, September, 2010.
  108. Marie-Odile Bristeau, Roland Glowinski, Bertrand Mantel, Jacques Périaux and Mourad Sefrioui. Genetic Algorithms for Electromagnetic Backscattering: Multiobjective Optimization, in Yahya Rahmat-Samii and Eric Michielssen (editors), Electromagnetic Optimization by Genetic Algorithms, Chapter 13, pp. 399--434, John Wiley and Sons, Inc., New York, 1999.
  109. Mário Brito and John May. Safety Critical Software Process Improvement by Multi-objective Optimization Algorithms, in Qing Wang, Dietmar Pfahl and David M. Raffo (editors), Software Process Dynamics and Agility, International Conference on Software Process, ICSP 2007, pp. 96-108, Springer, Lecture Notes in Computer Science, Vol. 4470, Minneapolis, MN, USA, May 19-20 2007. ISBN 978-3-540-72425-4.
  110. C. Brizuela, N. Sannomiya and Y. Zhao. Multi-Objective Flow-Shop: Preliminary Results. In Eckart Zitzler, Kalyanmoy Deb, Lothar Thiele, Carlos A. Coello Coello and David Corne, editors, First International Conference on Evolutionary Multi-Criterion Optimization, pages 443-457. Springer-Verlag. Lecture Notes in Computer Science No. 1993, 2001.
  111. Dimo Brockhoff and Eckart Zitzler. Are All Objectives Necessary? On Dimensionality Reduction in Evolutionary Multiobjective Optimization, in Thomas Philip Runarsson, Hans-Georg Beyer, Edmund Burke, Juan J. Merelo-Guervós, L. Darrell Whitley and Xin Yao (editors), Parallel Problem Solving from Nature - PPSN IX, 9th International Conference, pp. 533--542, Springer. Lecture Notes in Computer Science Vol. 4193, Reykjavik, Iceland, September 2006.
  112. Dimo Brockhoff, Dhish Kumar Saxena, Kalyanmoy Deb and Eckart Zitzler. On Handling a Large Number of Objectives A Posteriori and During Optimization, in Joshua Knowles, David Corne and Kalyanmoy Deb (Editors), Multi-Objective Problem Solving from Nature: From Concepts to Applications, pp. 377--403, Springer, Berlin, 2008, ISBN 978-3-540-72963-1.
  113. Dimo Brockhoff, Tobias Friedrich and Frank Neumann. Analyzing Hypervolume Indicator Based Algorithms, in Günter Rudolph, Thomas Jansen, Simon Lucas, Carlo Poloni and Nicola Beume (editors), Parallel Problem Solving from Nature--PPSN X, pp. 651--660, Springer, Lecture Notes in Computer Science Vol. 5199, Dortmund, Germany, September 2008.
  114. Dimo Brockhoff and Eckart Zitzler. Automated Aggregation and Omission of Objectives for Tackling Many-Objective Problems, in Dylan Jones, Mehrdad Tamiz and Jana Ries (Editors), New Developments in Multiple Objective and Goal Programming, pp. 81--102, Springer. Lecture Notes in Economics and Mathematical Systems Vol. 638, Berlin, 2010.
  115. Dimo Brockhoff. Theoretical Aspects of Evolutionary Multiobjective Optimization, in Anne Auger and Benjamin Doerr (editors), Theory of Randomized Search Heuristics. Foundations and Recent Developments, pp. 101--139, Chapter 4, World Scientific, Singapore, 2011, ISBN 978-981-4282-66-6.
  116. Rob A. C.M. Broekmeulen. Facility Management of Distribution Centers for Vegetables and Fruits. In J. Biethahn and Volker Nissen (editors), Evolutionary Algorithms in Management Applications, Springer-Verlag, Berlin, pp. 199-210, 1995.
  117. Lam T. Bui, Minh-Ha Nguyen, Jürgen Branke and Hussein A. Abbass. Tackling Dynamic Problems with Multiobjective Evolutionary Algorithms, in Joshua Knowles, David Corne and Kalyanmoy Deb (Editors), Multi-Objective Problem Solving from Nature: From Concepts to Applications, pp. 77--91, Springer, Berlin, 2008, ISBN 978-3-540-72963-1 .
  118. Lam Thu Bui and Sameer Alam. An Introduction to Multi-Objective Optimization, in Lam Thu Bui and Sameer Alam (editors), Multi-Objective Optimization in Computational Intelligence: Theory and Practice, pp. 1-19, Information Science Reference, Hershey, PA, USA, 2008, ISBN 978-1-59904-498-9 .
  119. Lam T. Bui, Daryl Essam and Hussein A. Abbass. The Role of Explicit Niching and Communication Messages in Distributed Evolutionary Multi-objective Optimization, in Francisco Fernández de Vega and Erick Cantú-Paz (editors), Parallel and Distributed Computational Intelligence, pp. 181--206, Springer, Berlin, Germany, 2010.
  120. Lam T. Bui and Viet Hoang. A Multi-Objective Approach for Master's Thesis Committees Scheduling Using DMEA, in Lam Thu Bui, Yew Soon Ong, Nguyen Xuan Hoai, Hisao Ishibuchi and Ponnuthurai Nagaratnam Suganthan (editors), Simulated Evolution and Learning, 9th International Conference, SEAL 2012, pp. 450--459, Springer. Lecture Notes in Computer Science Vol. 7673, Hanoi, Vietnam, December 16-19, 2012.
  121. Sujin Bureerat and Krit Sriworamas. Population-Based Incremental Learning for Multiobjective Optimisation. in Janusz Kacprzyk, (editor), Soft Computing in Industrial Applications, chapter 21, pp. 223--232, Springer. Advances in Soft Computing, Vol. 39, Berlin, 2007.
  122. Edmund K. Burke, J. Dario Landa Silva and Eric Soubeiga. Multi-objective Hyper-heuristic Approaches for Space Allocation and Timetabling, in Toshihide Ibaraki, Koji Nonobe and Matsunori Yagiura (editors), Meta-heuristics: Progress as Real Problem Solvers, Selected Papers from the 5th Metaheuristics International Conference (MIC 2003), pp. 129--158, Springer, 2005.
  123. C

  124. Michael Calonder, Stefan Bleuler and Eckart Zitzler. Module Identification from Heterogeneous Biological Data Using Multiobjective Evolutionary Algorithms, in Thomas Philip Runarsson, Hans-Georg Beyer, Edmund Burke, Juan J. Merelo-Guervós, L. Darrell Whitley and Xin Yao (editors), Parallel Problem Solving from Nature - PPSN IX, 9th International Conference, pp. 573--582, Springer. Lecture Notes in Computer Science Vol. 4193, Reykjavik, Iceland, September 2006.
  125. Mario Cámara, Julio Ortega and Francisco de Toro. The Parallel Single Front Genetic Algorithm (PSFGA) in Dynamic Multi-objective Optimization, in Francisco Sandoval, Alberto Prieto, Joan Cabestany and Manuel Graña (editors), Computational and Ambient Intelligence, 9th International Work-Conference on Artificial Neural Networks, IWANN 2007, pp. 300--307, Springer. Lecture Notes in Computer Science Vol. 4507, San Sebastián, Spain, June 20-22, 2007.
  126. Mario Cámara, Julio Ortega and Francisco de Toro. Approaching Dynamic Multi-Objective Optimization Problems by Using Parallel Evolutionary Algorithms. in Carlos A. Coello Coello, Clarisse Dhaenens, and Laetitia Jourdan, (editors), Advances in Multi-Objective Nature Inspired Computing, chapter 4, pp. 63--86, Springer, Studies in Computational Intelligence, Vol. 272, Berlin, Germany, 2010, ISBN 978-3-642-11217-1.
  127. Waldo Cancino, Laetitia Jourdan, El-Ghazali Talbi and Alexandre C.B. Delbem. A Parallel Multi-Objective Evolutionary Algorithm for Phylogenetic Inference, in Christian Blum and Roberto Battiti (editors), Learning and Intelligent Optimization, 4th International Conference, LION 4, pp. 196--199, Springer. Lecture Notes in Computer Science Vol. 6073, Venice, Italy, January 18-22, 2010.
  128. Genci Capi, Yasuo Nasu, Mitsuhiro Yamano and Kazuhisa Mitobe. Multicriteria Optimal Humanoid Robot Motion Generation, in Armando Carlos de Pina Filho (editor), Humanoid Robots. New Developments, pp. 157--170, Advanced Robotic Systems International and I-Tech, Vienna, Austria, 2007, ISBN 978-3-902613-00-4.
  129. Andrea Caponio and Ferrante Neri. Integrating Cross-Dominance Adaptation in Multi-Objective Memetic Algorithms, in Chi-Keong Goh, Yew-Soon Ong and Kay Chen Tan (editors), Multi-Objective Memetic Algorithms, chapter 15, pp. 325--351, Springer, Studies in Computational Intelligence, Vol. 171, Berlin, Germany, 2009. ISBN 978-3-540-88050-9 .
  130. W. Matthew Carlyle, Bosun Kim, John W. Fowler and Esma S. Gel. Comparison of Multiple Objective Genetic Algorithms for Parallel Machine Scheduling Problems. In Eckart Zitzler, Kalyanmoy Deb, Lothar Thiele, Carlos A. Coello Coello and David Corne, editors, First International Conference on Evolutionary Multi-Criterion Optimization, pages 472-485. Springer-Verlag. Lecture Notes in Computer Science No. 1993, 2001.
  131. André B. de Carvalho and Aurora Pozo. Mining Rules: A Parallel Multiobjective Particle Swarm Optimization Approach. in Carlos Artemio Coello Coello, Satchidananda Dehuri and Susmita Ghosh, (editors), Swarm Intelligence for Multi-objective Problems in Data Mining, chapter 8, pp. 179--198, Springer. Studies in Computational Intelligence. Vol. 242, Berlin, 2009.
  132. André B. de Carvalho, Aurora Pozo and Silvia Vergilio. A Non-ordered Rule Induction Algorithm through Multi-Objective Particle Swarm Optimization: Issues and Applications, in Nadia Nedjah, Leandro dos Santos Coelho, and Luiza de Macedo de Mourelle, (editors), Multi-Objective Swarm Intelligent Systems. Theory & Experiences, chapter 2, pp. 17--44, Springer, Studies in Computational Intelligence, Vol. 261, Berlin, Germany, 2010. ISBN 978-3-642-05164-7.
  133. P.A. Castillo, M.G. Arenas, J.J. Merelo, V.M. Rivas and G. Romero. Multiobjective Optimization of Ensembles of Multilayer Perceptrons for Pattern Classification, in Thomas Philip Runarsson, Hans-Georg Beyer, Edmund Burke, Juan J. Merelo-Guervós, L. Darrell Whitley and Xin Yao (editors), Parallel Problem Solving from Nature - PPSN IX, 9th International Conference, pp. 453--462, Springer. Lecture Notes in Computer Science Vol. 4193, Reykjavik, Iceland, September 2006.
  134. Flor Castillo, Arthur Kordon and Guido Smits. Robust Pareto Front Genetic Programming Parameter Selection Based on Design of Experiments and Industrial Data, in Rick L. Riolo, Terence Soule and Bill Worzel (editors), Genetic Programming Theory and Practice IV, pp. 149--166, Springer, Genetic and Evolutionary Computation Vol. 5, Ann Arbor, May 2007.
  135. Pablo A.D. Castro and Fernando J. Von Zuben. MOBAIS: A Bayesian Artificial Immune System for Multi-Objective Optimization, in Peter J. Bentley, Doheon Lee and Sungwon Jung (editors), Artificial Immune Systems, 7th International Conference, ICARIS 2008, pp. 48--59, Springer, Lecture Notes in Computer Science Vol. 5132, Phuket, Thailand, August 2008.
  136. Carlos Castro, Broderick Crawford and Eric Monfroy. A Genetic Local Search Algorithm for the Multiple Optimisation of the Balanced Academic Curriculum Problem. in Yong Shi, Shouyang Wang, Yi Peng, Jianping Li and Yong Zeng, (editors), Cutting-Edge Research Topics on Multiple Criteria Decision Making (MCDM'2009), pp. 824-832, Springer, Communications in Computer and Information Science, Vol. 35, Heidelberg, Germany, 2009.
  137. Juan P. Castro, Dario Landa-Silva and José A. Moreno Pérez. Exploring Feasible and Infeasible Regions in the Vehicle Routing Problem with Time Windows Using a Multi-objective Particle Swarm Optimization Approach, in Natalio Krasnogor, María Belén Melián-Batista, José Andrés Moreno-Pérez, J. Marcos Moreno-Vega and David Alejandro Pelta (editors), Nature Inspired Cooperative Strategies for Optimization (NICSO 2008), pp. 103--114, Springer-Verlag, Berlin, 2009, ISBN 978-3-642-03210-3.
  138. Juan Castro-Gutierrez, Dario Landa-Silva and José Moreno Pérez. Improved Dynamic Lexicographic Ordering for Multi-Objective Optimisation. in Robert Schaefer, Carlos Cotta, Joanna Kolodziej, and Günter Rudolph, (editors), Parallel Problem Solving from Nature--PPSN XI, 11th International Conference, Proceedings, Part II, pp. 31--40, Springer, Lecture Notes in Computer Science Vol. 6239, Kraków, Poland, September, 2010.
  139. Liam Cervante, Bing Xue, Lin Shang and Mengjie Zhang. A Multi-objective Feature Selection Approach Based on Binary PSO and Rough Set Theory, in Martin Middendorf and Christian Blum (editors), Evolutionary Computation in Combinatorial Optimization, 13th European Conference, EvoCOP 2013, pp. 25--36, Springer. Lecture Notes in Computer Science Vol. 7832, Vienna, Austria, April 3-5, 2013.
  140. Tak Ming Chan, Kit Sang Tang, Sam Kwong and Kim Fung Man. Multiobjective Optimization Methods, in Bogdan M. Wilamowski and J. David Irwin (Editors), Industrial Electronics Handbook. Intelligent Systems, Second Edition, Chapter 24, pp. 24-1--24-24, CRC Press, Boca Raton, Florida, USA, 2011, ISBN 978-1-4398-0283-0 .
  141. Arjun Chandra, Huanhuan Chen and Xin Yao. Trade-Off Between Diversity and Accuracy in Ensemble Generation, in Yaochu Jin (Editor), Multi-Objective Machine Learning, pp. 429--464, Springer. Studies in Computational Intelligence, Volume 16, Berlin, 2006.
  142. Koyel Chaudhuri and Dipankar Dasgupta. Multi-Objective Evolutionary Algorithms to Solve Coverage and Lifetime Optimization Problem in Wireless Sensor Networks, in Bijaya Ketan Panigrahi, Swagatam Das, Ponnuthurai Nagaratnam Suganthan and Subhransu Sekhar Dash (editors), Swarm, Evolutionary, and Memetic Computing, First International Conference on Swarm, Evolutionary and Memetic Computing, SEMCCO 2010, pp. 514--522, Springer-Verlag. Lecture Notes in Computer Science Vol. 6466, Chennai, India, December 16-18, 2010.
  143. Wang Chen, Yan-jun Shi and Hong-fei Teng. A Generalized Differential Evolution Combined with EDA for Multi-objective Optimization Problems, in De-Shuang Huang, Donald C. Wunsch II, Daniel S. Levine, and Kang-Hyun Jo (editors), Advanced Intelligent Computing Theories and Applications. With Aspects of Artificial Intelligence, 4th International Conference on Intelligent Computing (ICIC'2008), pp. 140--147, Springer, Lecture Notes in Computer Science, Vol. 5227, Shanghai, China, September 15-18, 2008. ISBN 978-3-540-85983-3.
  144. Jinzhu Chen, Guolong Chen and Wenzhong Guo. A Discrete PSO for Multi-objective Optimization in VLSI Floorplanning. in Zhihua Cai, Zhenhua Li, Zhuo Khang, and Yong Liu, (editors), Advances in Computation and Intelligence, 4th International Symposium, ISCA 2009, pp. 400-410, Springer, Lecture Notes in Computer Science Vol. 5821, Huangshi, China, October, 2009.
  145. Yun Chen and Hanhong Zhu. PSO Heuristics Algorithm for Portfolio Optimization, in Ying Tan, Yuhui Shi and Kay Chen Tan (editors), Advances in Swarm Intelligence, First International Conference, ICSI 2010, pp. 183--190, Springer. Lecture Notes in Computer Science Vol. 6145, Beijing, China, June 12-15, 2010.
  146. Manuel Chica, Óscar Cordón, Sergio Damas, Jordi Pereira and Joaquín Bautista. Incorporating Preferences to a Multi-objective Ant Colony Algorithm for Time and Space Assembly Line Balancing, in Marco Dorigo, Mauro Birattari, Christian Blum, Maurice Clerc, Thomas Stützle and Alan F.T. Winfield (Editors), Ant Colony Optimization and Swarm Intelligence. 6th International Conference, ANTS 2008. Proceedings, pp. 331--338, Springer, Brussels, Belgium, September 2008.
  147. Francisco Chicano, Alejandro Cervantes, Francisco Luna and Gustavo Recio. A Novel Multiobjective Formulation of the Robust Software Project Scheduling Problem, in Cecilia Di Chio et al. (editors), Applications of Evolutionary Computation, EvoApplications 2012: EvoCOMNET, EvoCOMPLEX, EvoFIN, EvoGAMES, EvoHOT, EvoIASP, EvoNUM, EvoPAR, EvoRISK, EvoSTIM, and EvoSTOC, pp. 497--507, Springer. Lecture Notes in Computer Science Vol. 7248, Málaga, Spain, April 11-13, 2012.
  148. A.J. Chipperfield, J.F. Whidborne and P.J. Fleming. Evolutionary Algorithms and Simulated Annealing for MCDM. In T. Gal, T.J. Stewart and T. Hanne, editors, Multicriteria Decicion Making--Advances in MCDM Models, Algorithms, Theory and Applications, pages 16.1-16.32. Kluwer Academic Publishing, Boston, Massachusetts, 1999.
  149. Seongim Choi. Speedups for Efficient Genetic Algorithms: Design Optimization of Low-Boom Supersonic Jet Using Parallel GA and Micro-GA with External Memory, in John R. Koza (editor), Genetic Algorithms and Genetic Programming at Stanford 2003, pp. 21--30, Stanford Bookstore, Stanford, California, USA, December 2003.
  150. Alexander W. Churchill, Phil Husbands and Andrew Philippides. Multi-objectivization of the Tool Selection Problem on a Budget of Evaluations, in Robin C. Purshouse, Peter J. Fleming, Carlos M. Fonseca, Salvatore Greco and Jane Shaw (editors), Evolutionary Multi-Criterion Optimization, 7th International Conference, EMO 2013, pp. 600--614, Springer. Lecture Notes in Computer Science Vol. 7811, Sheffield, UK, March 19-22, 2013.
  151. Alberto Clarich, Valentino Pediroda, Carlo Poloni and Jacques Périaux. A Fast and Robust Adaptive Methodology for Design Under Uncertainties Based on DACE Response Surface and Game Theory, in William Annicchiarico, Jacques Périaux, Miguel Cerrolaza and Gabriel Winter (editors), Evolutionary Algorithms and Intelligent Tools in Engineering Optimization, pp. 75--91, WIT Press, CIMNE Barcelona, Southampton, Boston, 2005, ISBN 1-84564-038-1.
  152. Corie L. Cobb, Ying Zhang, Alice M. Agogino and Jennifer Mangold. Knowledge-Based Evolutionary Linkage in MEMS Design Synthesis, in Ying-ping Chen and Meng-Hiot Lim (editors), Linkage in Evolutionary Computation, pp. 461--483, Springer-Verlag, Berlin Heidelberg, 2008.
  153. Marco Cococcioni, Beatrice Lazzerini and Francesco Marcelloni. Towards Efficient Multi-objective Genetic Takagi-Sugeno Fuzzy Systems for High Dimensional Problems. in Yoel Tenne and Chi-Keong Goh, (editors), Computational Intelligence in Expensive Optimization Problems, pp. 397-\96422, Springer, Berlin, Germany, 2010. ISBN 978-3-642-10700-9. .
  154. R. Filomeno Coelho, PH. Bouillard and H. Bersini. PAMUC: A New Method to Handle Constraints and Multiobjectivity in Evolutionary Algorithms, in Tadeusz Burczyński and Andrzej Osyczka (editors), IUTAM Symposium on Evolutionary Methods in Mechanics, pp. 91--100, Kluwer Academic Publishers, Dordrecht/Boston/London, 2004, ISBN 1-4020-2266-2.
  155. Leandro dos Santos Coelho, Helon Vicente Hultmann Ayala, Nadia Nedjah and Luiza de Macedo Mourelle. Multiobjective Gaussian Particle Swarm Approach Applied to Multi-loop PI Controller Tuning of a Quadruple-Tank System. in Nadia Nedjah, Leandro dos Santos Coelho, and Luiza de Macedo de Mourelle, (editors), Multi-Objective Swarm Intelligent Systems. Theory & Experiences, chapter 1, pp. 1--16, Springer, Studies in Computational Intelligence, Vol. 261, Berlin, Germany, 2010. ISBN 978-3-642-05164-7.
  156. Marcelo Azevedo Costa and Ant&ocicr;nio Pádua Braga. Gradient Descent Decomposition for Multi-objective Learning, in Hujun Yin, Wenjia Wang and Victor Rayward-Smith (editors), Intelligent Data Engineering and Automated Learning-IDEAL 2011, 12th International Conference, pp. 377--384, Springer. Lecture Notes in Computer Science Vol. 6936, Norwich, UK, September 7-9, 2011.
  157. Carlos A. Coello Coello and Gregorio Toscano. A Micro-Genetic Algorithm for Multiobjective Optimization. In Eckart Zitzler, Kalyanmoy Deb, Lothar Thiele, Carlos A. Coello Coello and David Corne, editors, First International Conference on Evolutionary Multi-Criterion Optimization, pages 126-140. Springer-Verlag. Lecture Notes in Computer Science No. 1993, 2001.
  158. Carlos A. Coello Coello. A Short Tutorial on Evolutionary Multiobjective Optimization. In Eckart Zitzler, Kalyanmoy Deb, Lothar Thiele, Carlos A. Coello Coello and David Corne, editors, First International Conference on Evolutionary Multi-Criterion Optimization, pages 21-40. Springer-Verlag. Lecture Notes in Computer Science No. 1993, 2001
  159. Carlos A. Coello Coello. Evolutionary Multi-Objective Optimization: A Critical Review, in Ruhul Sarker, Masoud Mohammadian and Xin Yao (eds), Evolutionary Optimization, pp. 117--146, Kluwer Academic Publishers, New York, February 2002, ISBN 0-7923-7654-4.
  160. Carlos A. Coello Coello and Carlos E. Mariano Romero. Evolutionary Algorithms and Multiple Objective Optimization, in Matthias Ehrgott and Xavier Gandibleux (editors), Multiple Criteria Optimization: State of the Art Annotated Bibliographic Surveys, pp. 277--331, Kluwer Academic Publishers, Boston, 2002.
  161. Carlos A. Coello Coello and Gary B. Lamont. An Introduction to Multi-Objective Evolutionary Algorithms and Their Applications, in Carlos A. Coello Coello and Gary B. Lamont (editors), Applications of Multi-Objective Evolutionary Algorithms, pp. 1--28, World Scientific, Singapore, 2004.
  162. Carlos A. Coello Coello. Recent Trends in Evolutionary Multiobjective Optimization, in Ajith Abraham, Lakhmi Jain and Robert Goldberg (editors), Evolutionary Multiobjective Optimization: Theoretical Advances And Applications, pp. 7--32, Springer-Verlag, London, ISBN 1-85233-787-7, 2005.
  163. Carlos A. Coello Coello, Gregorio Toscano Pulido and Efrén Mezura Montes. Current and Future Research Trends in Evolutionary Multiobjective Optimization, in Manuel Graña, Richard Duro, Alicia d'Anjou and Paul P. Wang (editors), Information Processing with Evolutionary Algorithms: From Industrial Applications to Academic Speculations, pp. 213--231, Springer-Verlag, ISBN 1-8523-3866-0, 2005.
  164. Carlos A. Coello Coello, 20 Years of Evolutionary Multi-Objective Optimization: What Has Been Done and What Remains to be Done, in Gary Y. Yen and David B. Fogel (editors), Computational Intelligence: Principles and Practice, Chapter 4, pp. 73--88, IEEE Computational Intelligence Society, 2006.
  165. Carlos A. Coello Coello, Evolutionary Multi-Objective Optimization in Finance, in Jean-Philippe Rennard (editor), Handbook of Research on Nature Inspired Computing for Economy and Management, pp. 74--88, Vol. I, Idea Group Reference, Hershey, UK, 2006, ISBN 1-59140-984-5.
  166. Carlos A. Coello Coello, Clarisse Dhaenens and Laetitia Jourdan. Multi-Objective Combinatorial Optimization: Problematic and Context. in Carlos A. Coello Coello, Clarisse Dhaenens, and Laetitia Jourdan, (editors), Advances in Multi-Objective Nature Inspired Computing, chapter 1, pp. 1--21, Springer, Studies in Computational Intelligence, Vol. 272, Berlin, Germany, 2010, ISBN 978-3-642-11217-1.
  167. Carlos A. Coello Coello. A Tutorial on Multi-Objective Optimization using Metaheuristics, in L.M. Esteban, B. Lacruz, F.J. López, P.M. Mateo, A. Pérez-Palomares, G. Sanz and C. Paroissin (editors), The Pyrenees International Workshop and Summer School on Statistics, Probability and Operations Research SPO 2009, pp. 19--38, Monografías Matemáticas "García de Galdeano" No. 36, Universidad de Zaragoza, Spain, December 2010, ISBN 978-84-15031-92-5.
  168. Carlos A. Coello Coello. Fundamentals of Evolutionary Multi-Objective Optimization, in Bogdan M. Wilamowski and J. David Irwin (Editors), Industrial Electronics Handbook. Intelligent Systems, Second Edition, Chapter 25, pp. 25-1--25-11, CRC Press, Boca Raton, Florida, USA, 2011, ISBN 978-1-4398-0283-0 .
  169. Carlos A. Coello Coello. Evolutionary Multi-Objective Optimization: Basic Concepts and Some Applications in Pattern Recognition, in José Francisco Martínez-Trinidad, Jesús Ariel Carrasco-Ochoa, Cherif Ben-Youssef Brants and Edwin Robert Hancock (Editors), Pattern Recognition, Third Mexican Conference, MCPR 2011, pp. 22--33, Springer, Lecture Notes in Computer Science Vol. 6718, Cancun, México, June/July 2011.
  170. Gualtiero Colombo and Stuart M. Allen. A Decomposed Approach for the Minimum Interference Frequency Assignment, in Ying-ping Chen and Meng-Hiot Lim (editors), Linkage in Evolutionary Computation, pp. 389--417, Springer-Verlag, Berlin Heidelberg, 2008.
  171. Oscar Cordón and Arnaud Quirin and Rocío Romero-Zaliz. Multiple Ant Colony System for Substructure Discovery, in Marco Dorigo, Mauro Birattari, Gianni A. Di Caro, René Doursat, Andries P. Engelbrecht, Dario Floreano, Luca Maria Gambardella, Roderich Gross, Erol Sahin, Hiroki Sayama and Thomas Stützle, (editors), Swarm Intelligence. 7th International Conference, ANTS 2010, pp. 472--479, Springer, Lecture Notes in Computer Science Vol. 6234, Brussels, Belgium, September 8-10, 2010.
  172. Mario Costa, Edmondo Minisci and Eros Pasero. An Hybrid Neural/Genetic Approach to Continuous Multi-objective Optimization Problems. in Bruno Apolloni, Maria Marinaro, and Roberto Tagliaferri, (editors), Neural Nets, 14th Italian Workshop on Neural Nets, WIRN VIETRI 2003, pp. 61--69, Springer, Lecture Notes in Computer Science, Vol. 2859, Vietri sul Mare, Italy, June 4-7, 2003.
  173. Pascal Coté, Tony Wong and Robert Sabourin. A Hybrid Multi-objective Evolutionary Algorithm for the Uncapacitated Exam Proximity Problem. in Edmund Burke and Michael Trick, (editors), Practice and Theory of Automated Timetabling V. PATAT 2004, pp. 294--312, Springer. Lecture Notes in Computer Science. Vol. 3616, Berlin, Germany, 2005.
  174. José António Covas and António Gaspar-Cunha. Polymer Extrusion—Setting the Operating Conditions and Defining the Screw Geometry, in António Gaspar-Cunha and José António Covas (editors), Optimization in Polymer Processing, Chapter 5, pp. 87--113, Nova Science Publishers, New York, USA, 2011, ISBN 978-1-61122-818-2 .
  175. Jorge Crichigno and Benjamín Barán. Multiobjective Multicast Routing Algorithm, in José Neuman de Souza, Petre Dini and Pascal Lorenz (editors), Telecommunications and Networking. 11th International Conference on Telecommunications (ICT'2004), pp. 1029-1034, Springer, Lecture Notes in Computer Science, Vol. 3124, Fortaleza, Brazil, August 1-6 2004. ISBN 978-3-540-22571-3.
  176. Péter Cserti, Szabolcs Szondi, Balázs Gaál, György Kozmann and István Vassányi. GPU Based Parallel Genetic Algorithm Library, in Bogdan Filipic and Jurij Silc (editors), Bioinspired Optimization Methods and Their Applications, Proceedings of the Fifth International Conference on Bioinspired Optimization Methods and their Applications, BIOMA 2012, pp. 231--244, Jozef Stefan Institute, Bohinj, Slovenia, May 2012.
  177. M. P. Cuéllar, M. Delgado and M. C. Pegalajar. Topology Optimization and Training of Recurrent Neural Networks with Pareto-Based Multi-objective Algorithms: A Experimental Study, in Francisco Sandoval Hernández, Alberto Prieto, Joan Cabestany, and Manuel Graña, (editors), Computational and Ambient Intelligence, 9th International Work-Conference on Artificial Neural Networks (IWANN 2007), pp. 359--366, Springer. Lecture Notes in Computer Science, Vol. 4507, Heidelberg, Germany, 2007.
  178. Vincenzo Cutello, Giuseppe Narzisi and Giuseppe Nicosia. A Class of Pareto Archived Evolution Strategy Algorithms Using Immune Inspired Operators for Ab-Initio Protein Structure Prediction, in Franz Rothlauf et al. (editors), Applications of Evolutionary Computing. Evoworkshops 2005: EvoBIO, EvoCOMNET, EvoHOT, EvoIASP, EvoMUSART and EvoSTOC, pp. 54--63, Springer. Lecture Notes in Computer Science Vol. 3449, Lausanne, Switzerland, March/April 2005.
  179. Vincenzo Cutello, Giuseppe Narzisi and Giuseppe Nicosia. Computational Studies of Peptide and Protein Structure Prediction Problems via Multiobjective Evolutionary Algorithms, in Joshua Knowles, David Corne and Kalyanmoy Deb (Editors), Multi-Objective Problem Solving from Nature: From Concepts to Applications, pp. 93--114, Springer, Berlin, 2008, ISBN 978-3-540-72963-1 .
  180. Dragan Cvetkovic and Carlos A. Coello Coello. Human Preferences and Their Applications in Evolutionary Multi-Objective Optimization, in Yaochu Jin (editor), Knowledge Incorporation in Evolutionary Computation, Springer, pp. 479--502, Berlin Heidelberg, 2005, ISBN 3-540-22902-7 .
  181. D

  182. Madan Mohan Dabbeeru, Kalyanmoy Deb and Amitabha Mukerjee. Product Portfolio Selection of Designs Through an Analysis of Lower-Dimensional Manifolds and Identification of Common Properties, in Lihui Wang, Amos H.C. Ng and Kalyanmoy Deb (editors), Multi-objective Evolutionary Optimisation for Product Design and Manufacturing, Chapter 5, pp. 161--187, Springer, London, UK, 2011, ISBN 978-0-85729-617-7.
  183. S. D'Angelo, M. Fantetti and E. Minisci. Hang-Glider Wing Design by Genetic Optimization, in Tadeusz Burczynski and Andrzej Osyczka (editors), IUTAM Symposium on Evolutionary Methods in Mechanics, pp. 47--58, Kluwer Academic Publishers, Dordrecht/Boston/London, 2004, ISBN 1-4020-2266-2.
  184. Salvatore D'Angelo, Edmondo Minisci and Marco Dutto. Evolutionary Optimization of a Robust Controller for Flight Maneuvers, in Bogdan Filipic and Jurij Silc (editors), Bioinspired Optimization Methods and Their Applications. Proceedings of the International Conference on Bioinspired Optimization Methods and their Applications, BIOMA 2004, pp. 137--146, Jožef Stefan Institute, Ljubljana, Slovenia, October 2004.
  185. Ranajit Das, Sushmita Mitra, Haider Banka and Subhasis Mukhopadhyay. Evolutionary Biclustering with Correlation for Gene Interaction Networks, in Ashish Ghosh, Rajat K. De, and Sankar K. Pal (editors), Pattern Recognition and Machine Intelligence. Second International Conference (PReMI'2007), pp. 416-424, Springer, Lecture Notes in Computer Science, Vol. 4815, Kolkata, India, December 18-22 2007. ISBN 978-3-540-77045-9.
  186. Madhabananda Das and Satchidanandra Dehuri. Some Studies on Particle Swarm Optimization for Single and Multi-Objective Problems, in Satchidanada Dehuri, Susmita Ghosh and Sung Bae Cho (editors), Integration of Swarm Intelligence and Artificial Neural Network, pp. 239--304, Chapter 10, World Scientific, Singapore, 2011, ISBN 978-981-4280-14-3.
  187. Dilip Datta, Kalyanmoy Deb and Carlos M. Fonseca. Multi-Objective Evolutionary Algorithm for University Class Timetabling Problem, in Keshav P. Dahal, Kay Chen Tan and Peter I Cowling (editors), Evolutionary Scheduling, pp. 197--236, Springer, Studies in Computational Intelligence (SCI), Berlin, 2007, ISBN 3-540-48582-1 .
  188. Madeleine Davis-Moradkhan and Will Browne. Evolutionary Algorithms for the Multi Criterion Minimum Spanning Tree Problem. in Yoel Tenne and Chi-Keong Goh, (editors), Computational Intelligence in Expensive Optimization Problems, pp. 423--452, Springer, Berlin, Germany, 2010. ISBN 978-3-642-10700-9.
  189. Edwin D. de Jong and Anthony Bucci. Objective Set Compression. Test-Based Problems and Multiobjective Optimization , in Joshua Knowles, David Corne and Kalyanmoy Deb (Editors), Multi-Objective Problem Solving from Nature: From Concepts to Applications, pp. 357--376, Springer, Berlin, 2008, ISBN 978-3-540-72963-1 .
  190. Bilel Derbel, Dimo Brockhoff and Arnaud Liefooghe. Force-Based Cooperative Search Directions in Evolutionary Multi-objective Optimization, in Robin C. Purshouse, Peter J. Fleming, Carlos M. Fonseca, Salvatore Greco and Jane Shaw (editors), Evolutionary Multi-Criterion Optimization, 7th International Conference, EMO 2013, pp. 383--397, Springer. Lecture Notes in Computer Science Vol. 7811, Sheffield, UK, March 19-22, 2013.
  191. Kalyanmoy Deb. Evolutionary Algorithms for Multi-Criterion Optimization in Engineering Design, In Kaisa Miettinen, Marko M. Mäkelä, Pekka Neittaanmäki and Jacques Periaux, editors, Evolutionary Algorithms in Engineering and Computer Science, chapter 8, pages 135-161. John Wiley & Sons, Ltd, Chichester, UK, 1999.
  192. Kalyanmoy Deb and Tushar Goel. A Hybrid Multi-Objective Evolutionary Approach to Engineering Shape Design. In Eckart Zitzler, Kalyanmoy Deb, Lothar Thiele, Carlos A. Coello Coello and David Corne, editors, First International Conference on Evolutionary Multi-Criterion Optimization, pages 385-399. Springer-Verlag. Lecture Notes in Computer Science No. 1993, 2001
  193. Kalyanmoy Deb and Tushar Goel. Controlled Elitist Non-dominated Sorting Genetic Algorithms for Better Convergence. In Eckart Zitzler, Kalyanmoy Deb, Lothar Thiele, Carlos A. Coello Coello and David Corne, editors, First International Conference on Evolutionary Multi-Criterion Optimization, pages 67-81. Springer-Verlag. Lecture Notes in Computer Science No. 1993, 2001
  194. Kalyanmoy Deb, Amrit Pratap and T. Meyarivan. Constrained Test Problems for Multi-objective Evolutionary Optimization. In Eckart Zitzler, Kalyanmoy Deb, Lothar Thiele, Carlos A. Coello Coello and David Corne, editors, First International Conference on Evolutionary Multi-Criterion Optimization, pages 284-298. Springer-Verlag. Lecture Notes in Computer Science No. 1993, 2001
  195. Kalyanmoy Deb and Tushar Goel. Multi-Objective Evolutionary Algorithms for Engineering Shape Design, in Ruhul Sarker, Masoud Mohammadian and Xin Yao (eds), Evolutionary Optimization, pp. 146--175, Kluwer Academic Publishers, New York, February 2002, ISBN 0-7923-7654-4.
  196. Kalyanmoy Deb. Multi-objective Evolutionary Algorithms: Introducing Bias Among Pareto-optimal Solutions, in Ashish Ghosh and Shigeyoshi Tsutsui (editors), Advances in Evolutionary Computing. Theory and Applications, pp. 263--292, Springer, Berlin, 2003, ISBN 3-540-43330-9 .
  197. Kalyanmoy Deb and Sachin Jain. Evaluating Evolutionary Multi-Objective Optimization Algorithms using Running Performance Metrics, in Kay Chen Tan, Meng Hiot Lim, Xin Yao and Lipo Wang (editors), Recent Advances in Simulated Evolution and Learning, pp. 307--326, World Scientific, Singapore, 2004.
  198. Kalyanmoy Deb, Lothar Thiele, Marco Laumanns and Eckart Zitzler. Scalable Test Problems for Evolutionary Multiobjective Optimization, in Ajith Abraham, Lakhmi Jain and Robert Goldberg (editors), Evolutionary Multiobjective Optimization. Theoretical Advances and Applications, pp. 105--145, Springer, USA, 2005.
  199. Kalyanmoy Deb. Muti-Objective Optimization, in Edmund K. Burke and Graham Kendall (editors), Search Methodologies. Introductory Tutorials in Optimization and Decision Support Techniques, pp. 273--316, Springer, USA, 2005, ISBN 0-387-23406-8.
  200. Kalyanmoy Deb. Evolutionary Multi-Objective Optimization Without Additional Parameters, in Fernando G. Lobo, Cláudio F. Lima and Zbigniew Michalewicz (editors), Parameter Setting in Evolutionary Algorithms, pp. 241--257, Springer-Verlag, Berlin, 2007.
  201. Kalyanmoy Deb and Pawan K.S. Nain. An Evolutionary Multi-objective Adaptive Meta-modeling Procedure Using Artificial Neural Networks, in Shengxiang Yang, Yew Soon Ong and Yaochu Jin (editors), Evolutionary Computation in Dynamic and Uncertain Environments, pp. 297--322, Springer, 2007, ISBN 978-3-540-49772-1 .
  202. Kalyanmoy Deb and Aravind Srinivasan. Innovization: Discovery of Innovative Design Principles Through Multiobjective Evolutionary Optimization , in Joshua Knowles, David Corne and Kalyanmoy Deb (Editors), Multi-Objective Problem Solving from Nature: From Concepts to Applications, pp. 243--262, Springer, Berlin, 2008, ISBN 978-3-540-72963-1 .
  203. Kalyanmoy Deb. Introduction to Evolutionary Multiobjective Optimization, in Jürgen Branke, Kalyanmoy Deb, Kaisa Miettinen and Roman Slowinski (editors), Multiobjective Optimization. Interactive and Evolutionary Approaches, pp. 59--96, Springer. Lecture Notes in Computer Science Vol. 5252, Berlin, Germany, 2008.
  204. Kalyanmoy Deb and Ankur Sinha. Solving Bilevel Multi-Objective Optimization Problems Using Evolutionary Algorithms, in Matthias Ehrgott, Carlos M. Fonseca, Xavier Gandibleux, Jin-Kao Hao and Marc Sevaux (editors), Evolutionary Multi-Criterion Optimization. 5th International Conference, EMO 2009, pp. 110--124, Springer. Lecture Notes in Computer Science Vol. 5467, Nantes, France, April 2009.
  205. Kalyanmoy Deb, Kaisa Miettinen and Deepak Sharma. A Hybrid Integrated Multi-Objective Optimization Procedure for Estimating Nadir Point, in Matthias Ehrgott, Carlos M. Fonseca, Xavier Gandibleux, Jin-Kao Hao and Marc Sevaux (editors), Evolutionary Multi-Criterion Optimization. 5th International Conference, EMO 2009, pp. 569--583, Springer. Lecture Notes in Computer Science Vol. 5467, Nantes, France, April 2009.
  206. Kalyanmoy Deb. Evolution's Niche in Multi-Criterion Problem Solving, in Andrew Lewis, Sanaz Mostaghim and Marcus Randall (editors), Biologically-Inspired Optimisation Methods, pp. 1--21, Springer, 2009. ISBN 978-3-642-01261-7 .
  207. Kalyanmoy Deb and Ankur Sinha. An Evolutionary Approach for Bilevel Multi-objective Problems. in Yong Shi, Shouyang Wang, Yi Peng, Jianping Li and Yong Zeng, (editors), Cutting-Edge Research Topics on Multiple Criteria Decision Making (MCDM'2009), pp. 17--24, Springer, Communications in Computer and Information Science, Vol. 35, Heidelberg, Germany, 2009.
  208. Kalyanmoy Deb and Kaisa Miettinen. Nadir Point Estimation Using Evolutionary Approaches: Better Accuracy and Computational Speed Through Focused Search. in Matthias Ehrgott, Boris Naujoks, Theodor J. Stewart and Jyrki Wallenius, (editors), Multiple Criteria Decision Making for Sustainable Energy and Transportation Systems, pp. 339--354, Springer, Lecture Notes in Economics and Mathematical Systems Vol. 634, Heidelberg, Germany, 2010.
  209. Kalyanmoy Deb and Shivam Gupta. Towards a Link Between Knee Solutions and Preferred Solution Methodologies, in Bijaya Ketan Panigrahi, Swagatam Das, Ponnuthurai Nagaratnam Suganthan and Subhransu Sekhar Dash (editors), Swarm, Evolutionary, and Memetic Computing, First International Conference on Swarm, Evolutionary and Memetic Computing, SEMCCO 2010, pp. 182--189, Springer-Verlag. Lecture Notes in Computer Science Vol. 6466, Chennai, India, December 16-18, 2010.
  210. Kalyanmoy Deb. Recent Developments in Evolutionary Multi-Objective Optimization, in Matthias Ehrgott, José Rui Figueira and Salvatore Greco (editors), Trends in Multiple Criteria Decision Analysis, Chapter 12, pp. 339--368, Springer, International Series in Operations Research and Management Science, 2010, ISBN 978-1-4419-5903-4.
  211. Kalyanmoy Deb. Multi-objective Optimisation Using Evolutionary Algorithms: An Introduction, in Lihui Wang, Amos H. C. Ng and Kalyanmoy Deb (editors), Multi-objective Evolutionary Optimisation for Product Design and Manufacturing, Chapter 1, pp. 3--34, Springer, London, UK, 2011, ISBN 978-0-85729-617-7.
  212. Kalyanmoy Deb. Advances in Evolutionary Multi-objective Optimization, in Gordon Fraser and Jerffeson Teixeira de Souza (editors), Search Based Software Engineering, 4th International Symposium, SSBSE 2012, pp. 1--26, Springer. Lecture Notes in Computer Science Vol. 7515, Riva del Garda, Italy, September 28-30, 2012.
  213. Kalyanmoy Deb. Two Approaches for Single and Multi-Objective Dynamic Optimization, in Enrique Alba, Amir Nakib and Patrick Siarry (editors), Metaheuristics for Dynamic Optimization, Chapter 6, pp. 99--116, Springer, Berlin, Germany, 2013, ISBN 978-3-642-30664-8.
  214. Satchidananda Dehuri, Susmita Ghosh and Ashish Ghosh. Genetic Algorithm for Optimization of Multiple Objectives in Knowledge Discovery from Large Databases, in Ashish Ghosh, Satchidananda Dehuri and Susmita Ghosh, editors, Multi-objective Evolutionary Algorithms for Knowledge Discovery from Data Bases, pp. 1--22, Springer, Berlin, 2008, ISBN 978-3-540-77466-2 .
  215. Satchidananda Dehuri, Susmita Ghosh and Carlos A. Coello Coello. An Introduction to Swarm Intelligence for Multi-objective Problems in Data Mining. in Carlos Artemio Coello Coello, Satchidananda Dehuri, and Susmita Ghosh, (editors), Swarm Intelligence for Multi-objective Problems in Data Mining, chapter 1, pp. 1--17, Springer. Studies in Computational Intelligence. Vol. 242, Berlin, 2009.
  216. Satchidananda Dehuri, Carlos A. Coello Coello, Sung-Bae Cho and Ashish Ghosh. A Discrete Particle Swarm for Multi-objective Problems in Polynomial Neural Networks Used for Classification: A Data Mining Perspective. in Carlos Artemio Coello Coello, Satchidananda Dehuri, and Susmita Ghosh, (editors), Swarm Intelligence for Multi-objective Problems in Data Mining, chapter 6, pp. 115--155, Springer. Studies in Computational Intelligence. Vol. 242, Berlin, 2009.
  217. María José del Jesus, Pedro González and Francisco Herrera. Subgroup Discovery with Linguistic Rules, in Humberto Bustince Sola, Francisco Herrera and Javier Montero (editors), Fuzzy Sets and Their Extensions: Representation, Aggregation and Models, pp. 411--430, Springer. Studies in Fuzziness and Soft Computing, Vol. 220, 2008.
  218. G. Dellino, P. Lino, C. Meloni and A. Rizzo. Enhanced Evolutionary Algorithms for Multidisciplinary Design Optimization: A Control Engineering Perspective, in Crina Grosan, Ajith Abraham and Hisao Ishibuchi (editors), Hybrid Evolutionary Algorithms, pp. 39--76, Springer, Heidelberg, 2007.
  219. P. B. de Moura Oliveira, E. J. Solteiro Pires, J. Boaventura Cunha and Damir Vrancic. Multi-Objective Particle Swarm Optimization Design of PID Controllers, in Sigeru Omatu, Miguel Rocha, José Bravo, Florentino Fernández Riverola, Emilio Corchado, Andrés Bustillo, and Juan M. Corchado (editors), Distributed Computing, Artificial Intelligence, Bioinformatics, Soft Computing, and Ambient Assisted Living, pp. 1222--1230, Springer, Lecture Notes in Computer Science, Vol. 5518, Salamanca, Spain, 2009. ISBN 978-3-642-02480-1.
  220. P. Di Barba, M. Farina and A. Savini, Progress in automated design of small and micro-electromechanical devices, Studies in Applied Electromagnetics and Mechanics, pp. 571--574, IOS Press, Vol. 18, 1999.
  221. P. Di Barba, M. Farina and A. Savini, Multicriteria Strategy for the optimization of air-cored solenoid systems, Studies in Applied Electromagnetics and Mechanics, pp. 475--478, IOS Press, Vol. 18, 1999.
  222. P. Di Barba, M. Farina and A. Savini. Multiobjective Design Optimization of Real-Life Devices in Electrical Engineering: A Cost-Effective Evolutionary Approach. In Eckart Zitzler, Kalyanmoy Deb, Lothar Thiele, Carlos A. Coello Coello and David Corne, editors, First International Conference on Evolutionary Multi-Criterion Optimization, pages 560-573. Springer-Verlag. Lecture Notes in Computer Science No. 1993, 2001.
  223. Christina Diakaki and Evangelos Grigoroudis. Applying genetic algorithms to optimize energy efficiency in buildings, in Michael Doumpos and Evangelos Grigoroudis (editors), Multicriteria Decision Aid and Artificial Intelligence: Links, Theory and Applications, Chapter 13, pp. 309--333, John Wiley & Sons, Chichester, United Kingdom, February 18, 2013, ISBN 978-1-119-97639-4.
  224. João P. Dias and Manuel S. Pereira. Multicriteria Optimization of Train Structures for Crashworthiness, in Jorge A. C. Ambrósio (editor), Advances in Computational Multibody Systems, pp. 295-317, Springer, Computational Methods in Applied Sciences, Vol. 2, 2005. ISBN 978-1-4020-3392-6.
  225. Alan Díaz-Manríquez, Gregorio Toscano-Pulido and Ricardo Landa-Becerra. A Surrogate-Based Intelligent Variation Operator for Multiobjective Optimization, in Jin-Kao Hao, Pierrick Legrand, Pierre Collet, Nicolas Monmarché, Evelyne Lutton and Marc Schoenauer (editors), Artificial Evolution, 10th International Conference, Evolution Artificielle, EA 2011, pp. 13--24, Springer. Lecture Notes in Computer Science Vol. 7401, Angers, France, October 24-26, 2012.
  226. Grant Dick and Peter A. Wingham. Spatially-Structured Evolutionary Algorithms and Sharing: Do They Mix?, in Tzai-Der Wang, Xiaodong Li, Shu-Heng Chen, Xufa Wang, Hussein Abbass, Hitoshi Iba, Guoliang Chen and Xin Yao (editors), Simulated Evolution and Learning, 6th International Conference, SEAL 2006, pp. 457--464, Springer. Lecture Notes in Computer Science Vol. 4247, Hefei, China, October 2006.
  227. Grant Dick and Peter A. Wingham. Multimodal Optimisation with Structured Populations and Local Environments, in Tzai-Der Wang, Xiaodong Li, Shu-Heng Chen, Xufa Wang, Hussein Abbass, Hitoshi Iba, Guoliang Chen and Xin Yao (editors), Simulated Evolution and Learning, 6th International Conference, SEAL 2006, pp. 505--512, Springer. Lecture Notes in Computer Science Vol. 4247, Hefei, China, October 2006.
  228. Robert P. Dick and Niraj K. Jha. MOCSYN: Multiobjective Core-Based Single-Chip System Synthesis, in Rudy Lauwereins and Jan Madsen (editors), Design, Automation, and Test in Europe, The Most Influential Papers of 10 Years DATE, pp. 291--311, Springer, 2008, ISBN 978-1-4020-6487-6.
  229. Grant Dick and Peter A. Whigham. A Weighted Local Sharing Technique for Multimodal Optimisation, in Xiaodong Li, Michael Kirley, Mengjie Zhang, David G. Green, Victor Ciesielski, Hussein A. Abbass, Zbigniew Michalewicz, Tim Hendtlass, Kalyanmoy Deb, Kay Chen Tan, Jürgen Branke and Yuhui Shi (editors), Simulated Evolution and Learning, 7th International Conference, SEAL 2008, pp. 452--461, Springer. Lecture Notes in Computer Science Vol. 5361, Melbourne, Australia, December 7-10, 2008.
  230. Rui Dilão, Daniele Muraro, Miguel Nicolau and Marc Schoenauer. Validation of. Morphogenesis Model of Drosophila Early Development by a Multi-objective Evolutionary Optimization Algorithm, in Clara Pizzuti, Marylyn D. Ritchie, and Mario Giacobini (editors), Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics (EvoBIO'2009), pp. 176-190, Springer, Lecture Notes in Computer Science, Vol. 5483, Tübingen, Germany, 2009. ISBN 978-3-642-01183-2.
  231. Ai Di-Ming, Zhang Zhe, Zhang Rui and Pan Feng. Research of Pareto-Based Multi-Objective Optimization for Multi-Vehicle Assignment Problem Based on MOPSO, in Ying Tan, Yuhui Shi, Yi Chai and Guoyin Wang (editors), Advances in Swarm Intelligence, Second International Conference, ICSI 2011, pp. 10--16, Springer. Lecture Notes in Computer Science Vol. 6729, Chongqing, China, June 12-15, 2011.
  232. Dawei Ding, Hongjin Wang and Gang Wang. Evolutionary Computation of Multi-Band Antenna Using Multi-Objective Evolutionary Algorithm Based on Decomposition, in Baoxiang Liu and Chunlai Chai (editors), Information Computing and Applications, Second International Conference, ICICA 2011, pp. 383--390, Springer. Lecture Notes in Computer Science Vol. 7030, Qinhuangdao, China, October 28-31, 2011.
  233. Grzegorz Dobrowolski and Marek Kisiel-Dorhinicki. Management of Evolutionary MAS for Multiobjective Optimisation, in Tadeusz Burczyński and Andrzej Osyczka (editors), IUTAM Symposium on Evolutionary Methods in Mechanics, pp. 81--90, Kluwer Academic Publishers, Dordrecht/Boston/London, 2004, ISBN 1-4020-2266-2.
  234. Teresa Donateo. Optimal Design of a Common Rail Diesel Engine Piston. in Yoel Tenne and Chi-Keong Goh, (editors), Computational Intelligence in Expensive Optimization Problems, pp. 513--541, Springer, Berlin, Germany, 2010. ISBN 978-3-642-10700-9.
  235. Moulay Rachid Douiri and Mohamed Cherkaoui. Evolutionary Multi-objective Optimization Based Proportional Integral Controller Design for Induction Motor Drive, in Chattrakul Sombattheera, Nguyen Kim Loi, Rajeev Wankar and Tho Quan (editors), Multi-disciplinary Trends in Artificial Intelligence, 6th International Workshop, MIWAI 2012, pp. 81--89, Springer. Lecture Notes in Artificial Intelligence Vol. 7694, Ho Chi Minh City, Vietnam, December 26-28, 2012.
  236. Michael Doumpos and Constantin Zopounidis. Computational intelligence techniques for multicriteria decision aiding: An overview, in Michael Doumpos and Evangelos Grigoroudis (editors), Multicriteria Decision Aid and Artificial Intelligence: Links, Theory and Applications, Chapter 1, pp. 3--23, John Wiley & Sons, Chichester, United Kingdom, 2013, ISBN 978-1-119-97639-4.
  237. Nicole Drechsler, Rolf Drechsler and Bernd Becker. >Multi-objective Optimisation Based on Relation favour. In Eckart Zitzler, Kalyanmoy Deb, Lothar Thiele, Carlos A. Coello Coello and David Corne, editors, First International Conference on Evolutionary Multi-Criterion Optimization, pages 154-166. Springer-Verlag. Lecture Notes in Computer Science No. 1993, 2001.
  238. Rafal Drezewski and Leszek Siwik. Co-evolutionary Multi-Agent System for Portfolio Optimization, in Anthony Brabazon and Michael O'Neill (editors), Natural Computation in Computational Finance, pp. 271--299, Springer-Verlag, Berlin, Heidelberg, 2008.
  239. Rafal Drezewski and Leszek Siwik. Agent-based co-evolutionary techniques for solving multi-objective optimization problems, in Witold Kosinski (editor), Advances in Evolutionary Algorithms, chapter 12, pp. 231-260, I-Tech Education and Publishing, Vienna, Austria, November 2008. ISBN 978-953-7619-11-4.
  240. Rafal Drezewski, Jan Sepielak and Leszek Siwik. Classical and Agent-Based Evolutionary Algorithms for Investment Strategies Generation, in Anthony Brabazon and Michael O'Neill (editors), Computational Intelligence in Finance, Vol. 2, pp. 181--205, Springer-Verlag, Berlin, Heidelberg, 2009, ISBN 978-3-540-95973-1.
  241. Rafal Drezewski, Krystian Obrocki and Leszek Siwik. Comparison of Multi-agent Co-operative Co-evolutionary and Evolutionary Algorithms for Multi-objective Portfolio Optimization, in Mario Giacobini, Anthony Brabazon, Stefano Cagnoni, Gianni A. Di Caro, Anikó Ekárt, Anna Isabel Esparcia-Alcázar, Muddassar Farooq, Andreas Fink and Penousal Machado (Editors), Applications of Evolutionary Computing, pp. 223--232, Springer, Heidelberg, 2009, ISBN 978-3-642-01128-3.
  242. Rafal Drezewski and Krystian Obrocki. Co-operative Co-evolutionary Approach to Multi-objective Optimization, in Emilio Corchado, Xindong Wu, Erkki Oja, Álvaro Herrero and Bruno Baruque (editors), Hybrid Artificial Intelligence Systems, 4th International Conference, HAIS 2009, pp. 277--284, Springer. Lecture Notes in Artificial Intelligence Vol. 5572, Salamanca, Spain, June 10-12, 2009.
  243. Grzegorz Drzadzewski and Mark Wineberg. The Importance of Scalability When Comparing Dynamic Weighted Aggregation and Pareto Front Techniques, in El-Ghazali Talbi, Pierre Liardet, Pierre Collet, Evelyne Lutton and Marc Schoenauer (editors), Artificial Evolution, 7th International Conference, Evolution Artificielle, EA 2005, pp. 143--154, Springer. Lecture Notes in Computer Science Vol. 3871, Lille, France, October 2005.
  244. Madalina M. Drugan and Dirk Thierens. Path-Guided Mutation for Stochastic Pareto Local Search Algorithms. in Robert Schaefer, Carlos Cotta, Joanna Kolodziej and Günter Rudolph, (editors), Parallel Problem Solving from Nature--PPSN XI, 11th International Conference, Proceedings, Part I, pp. 485--497, Springer, Lecture Notes in Computer Science Vol. 6238, Kraków, Poland, September, 2010.
  245. Jun Du, Erkan Korkmaz, Reda Alhajj and Ken Barker. Novel Clustering Approach that Employs Genetic Algorithm with New Representation Scheme and Multiple Objectives, in Yahiko Kambayashi, Mukesh Mohania and Wolfram Wöß (editors), Data Warehousing and Knowledge Discovery, 6th International Conference, pp. 219--228, Sptiner. Lecture Notes in Computer Science Vol. 3181, Zaragoza, Spain, September 1-3, 2004.
  246. Bing Du, Huaping Chen, George Q. Huang and H.D. Yang. Preference Vector Ant Colony System for Minimising Make-span and Energy Consumption in a Hybrid Flow Shop, in Lihui Wang, Amos H.C. Ng and Kalyanmoy Deb (editors), Multi-objective Evolutionary Optimisation for Product Design and Manufacturing, Chapter 9, pp. 279--304, Springer, London, UK, 2011, ISBN 978-0-85729-617-7.
  247. Pietro Ducange, Rafael Alcalá, Francisco Herrera, Beatrice Lazzerini and Francesco Marcelloni. Knowledge Base Learning of Linguistic Fuzzy Rule-Based Systems in. Multi-objective Evolutionary Framework, in Emilio Corchado, Ajith Abraham, and Witold Pedrycz (editors), Hybrid Artificial Intelligence Systems. Third International Workshop (HAIS'2008), pp. 747-754, Springer, Lecture Notes in Computer Science, Vol. 5271, Burgos, Spain, September 24-26 2008. ISBN 978-3-540-87655-7.
  248. E.I. Ducheyne, B. De Baets and R.R. De Wulf. Even Flow Scheduling Problems in Forest Management, in Carlos A. Coello Coello and Gary B. Lamont (editors), Applications of Multi-Objective Evolutionary Algorithms, pp. 701--726, World Scientific, Singapore, 2004.
  249. Jim Duggan. Using System Dynamics and Multiple Objective Optimization to Support Policy Analysis for Complex Systems, in H. Qudrat-Ullah, J.M. Spector and P.I. Davidsen (editors), Complex Decision Making. Theory and Practice, pp. 59--81, Springer, Berlin/Heidelberg/New York, 2008.
  250. Jiunn-Der Duh. Knowledge-Informed Simulated Annealing for Spatial Allocation Problems, in Cher Ming Tan (editor), Simulated Annealing, chapter 6, pp. 105--118, In-Teh, Croatia, September 2008. ISBN 978-953-7619-07-7.
  251. D. Dumitrescu, Crina Grosan and Mihai Oltean. Evolving Continuous Pareto Regions, in Ajith Abraham, Lakhmi Jain and Robert Goldberg (editors), Evolutionary Multiobjective Optimization. Theoretical Advances and Applications, pp. 167--199, Springer, USA, 2005.
  252. D. Dumitrescu, Rodica Ioana Lung and Tudor Dan Mihoc. Evolutionary Equilibria Detection in Non-cooperative Games. in Mario Giacobini, Anthony Brabazon, Stefano Cagnoni, Gianni A. Di Caro, Anikó Ekárt, Anna Isabel Esparcia-Alcázar, Muddassar Farooq, Andreas Fink and Penousal Machado, (editors), Applications of Evolutionary Computing (EvoWorkshops 2009), pp. 253--262, Springer, Lecture Notes in Computer Science, Vol. 5484, Heidelberg, Germany, 2009.
  253. Dumitru Dumitrescu, Rodica Ioana Lung, Réka Nagy, Daniela Zaharie, Attila Bartha and Doina Logofatu. Evolutionary Detection of New Classes of Equilibria. Application in Behavioral Games. in Robert Schaefer, Carlos Cotta, Joanna Kolodziej, and Günter Rudolph (editors), Parallel Problem Solving from Nature--PPSN XI, 11th International Conference, Proceedings, Part II, pp. 432--441, Springer, Lecture Notes in Computer Science Vol. 6239, Kraków, Poland, September, 2010.
  254. Orlando Duran, Roberto Barrientos and Luiz Airton Consalter. Multi Objective Optimization in Machining Operations, in Patricia Melin, Oscar Castillo, Eduardo Gómez-Ramírez, Janusz Kacprzyk, and Witold Pedrycz (editors), Analysis and Design of Intelligent Systems using Soft Computing Techniques, pp. 455-462, Springer, Advances in Soft Computing, Vol. 41, 2007. ISBN 978-3-540-72431-5.
  255. Feijoo Colomine Duran, Carlos Cotta and Antonio J. Fernández. Evolutionary Optimization for Multiobjective Portfolio Selection under Markowitz's Model with Application to the Caracas Stock Exchange, in Raymond Chiong (Editor), Nature-Inspired Algorithms for Optimisation, pp. 489--509, Springer, Berlin, ISBN 978-3-642-00266-3, 2009.
  256. Feijoo E. Colomine Duran, Carlos Cotta and Antonio J. Fernández-Leiva. A Comparative Study of Multi-objective Evolutionary Algorithms to Optimize the Selection of Investment Portfolios with Cardinality Constraints, in Cecilia Di Chio et al. (editors), Applications of Evolutionary Computation, EvoApplications 2012: EvoCOMNET, EvoCOMPLEX, EvoFIN, EvoGAMES, EvoHOT, EvoIASP, EvoNUM, EvoPAR, EvoRISK, EvoSTIM, and EvoSTOC, pp. 165--173, Springer. Lecture Notes in Computer Science Vol. 7248, Málaga, Spain, April 11-13, 2012.
  257. Juan José Durillo, Antonio J. Nebro, Francisco Luna and Enrique Alba. Solving Three-Objective Optimization Problems Using a New Hybrid Cellular Genetic Algorithm, in Günter Rudolph, Thomas Jansen, Simon Lucas, Carlo Poloni and Nicola Beume (editors), Parallel Problem Solving from Nature--PPSN X, pp. 661--670, Springer, Lecture Notes in Computer Science Vol. 5199, Dortmund, Germany, September 2008.
  258. Juan J. Durillo, Antonio J. Nebro, Francisco Luna and Enrique Alba. On the Effect of the Steady-State Selection Scheme in Multi-Objective Genetic Algorithms, in Matthias Ehrgott, Carlos M. Fonseca, Xavier Gandibleux, Jin-Kao Hao and Marc Sevaux (editors), Evolutionary Multi-Criterion Optimization. 5th International Conference, EMO 2009, pp. 183--197, Springer. Lecture Notes in Computer Science Vol. 5467, Nantes, France, April 2009.
  259. Juan J. Durillo, José García-Nieto, Antonio J. Nebro, Carlos A. Coello Coello, Francisco Luna and Enrique Alba. Multi-Objective Particle Swarm Optimizers: An Experimental Comparison, in Matthias Ehrgott, Carlos M. Fonseca, Xavier Gandibleux, Jin-Kao Hao and Marc Sevaux (editors), Evolutionary Multi-Criterion Optimization. 5th International Conference, EMO 2009, pp. 495--509, Springer. Lecture Notes in Computer Science Vol. 5467, Nantes, France, April 2009.
  260. Juan J. Durillo, Antonio J. Nebro, José García-Nieto and Enrique Alba. On the Velocity Update in Multi-Objective Particle Swarm Optimizers. in Carlos A. Coello Coello, Clarisse Dhaenens, and Laetitia Jourdan, (editors), Advances in Multi-Objective Nature Inspired Computing, chapter 3, pp. 45-62, Springer, Studies in Computational Intelligence, Vol. 272, Berlin, Germany, 2010, ISBN 978-3-642-11217-1 ..
  261. E

  262. Marc Ebner and Andreas Zell. Evolving a Task Specific Image Operator, in Riccardo Poli, Hans-Michael Voigt, Stefano Cagnoni, David Corne, George D. Smith and Terence C. Fogarty (eds), Evolutionary Image Analysis, Signal Processing and Telecommunications, pp. 74--89, Springer. Lecture Notes in Computer Science Volume 1596, Berlin, May 1999.
  263. Matthias Ehrgott and Xavier Gandibleux. Multiobjective Combinatorial Optimization---Theory, Methodology and Applications, in Matthias Ehrgott and Xavier Gandibleux (editors), Multiple Criteria Optimization: State of the Art Annotated Bibliographic Surveys, pp. 369--444, Kluwer Academic Publishers, Boston, 2002.
  264. Matthias Ehrgott and Xavier Gandibleux. Hybrid Metaheuristics for Multi-objective Combinatorial Optimization, in Christian Blum, María J. Blesa Aguilera andrea Roli and Michael Sampels (editors), Hybrid Metaheuristics, pp. 221--259, Springer, Studies in Computational Intelligence Vol. 114, 2008.
  265. Neil H. Eklund and Mark J. Embrechts. Determining the Color-Efficiency Pareto Optimal Surface for Filtered Light Sources. In Eckart Zitzler, Kalyanmoy Deb, Lothar Thiele, Carlos A. Coello Coello and David Corne, editors, First International Conference on Evolutionary Multi-Criterion Optimization, pages 603-611. Springer-Verlag. Lecture Notes in Computer Science No. 1993, 2001.
  266. Walid El Moudani, Carlos Alberto Nunes Cosenza, Marc de Coligny and Félix Mora-Camino. A Bi-Criterion Approach for the Airlines Crew Rostering Problem. In Eckart Zitzler, Kalyanmoy Deb, Lothar Thiele, Carlos A. Coello Coello and David Corne, editors, First International Conference on Evolutionary Multi-Criterion Optimization, pages 486-500. Springer-Verlag. Lecture Notes in Computer Science No. 1993, 2001.
  267. Mostafa Ellabaan, Xianshun Chen and Nguyen Quang Huy. Multi-modal Valley-Adaptive Memetic Algorithm for Efficient Discovery of First-Order Saddle Points, in Lam Thu Bui, Yew Soon Ong, Nguyen Xuan Hoai, Hisao Ishibuchi and Ponnuthurai Nagaratnam Suganthan (editors), Simulated Evolution and Learning, 9th International Conference, SEAL 2012, pp. 83--92, Springer. Lecture Notes in Computer Science Vol. 7673, Hanoi, Vietnam, December 16-19, 2012.
  268. Leonardo Emmendorfer and Aurora Pozo. A Clustering-Based Approach for Linkage Learning Applied to Multimodal Optimization, in Ying-ping Chen and Meng-Hiot Lim (editors), Linkage in Evolutionary Computation, pp. 225--248, Springer-Verlag, Berlin Heidelberg, 2008.
  269. Michael Emmerich, André Deutz, Johannes Kruisselbrink and Pradyumn Kumar Shukla. Cone-Based Hypervolume Indicators: Construction, Properties, and Efficient Computation, in Robin C. Purshouse, Peter J. Fleming, Carlos M. Fonseca, Salvatore Greco and Jane Shaw (editors), Evolutionary Multi-Criterion Optimization, 7th International Conference, EMO 2013, pp. 111--127, Springer. Lecture Notes in Computer Science Vol. 7811, Sheffield, UK, March 19-22, 2013.
  270. Michael T.M. Emmerich, André H. Deutz and Johannes W. Kruisselbrink. On Quality Indicators for Black-Box Level Set Approximation, in Emilia Tantar, Alexandru-Adrian Tantar, Pascal Bouvry, Pierre Del Moral, Pierrick Legrand, Carlos A. Coello Coello and Oliver Schütze (editors), EVOLVE - A bridge between Probability, Set Oriented Numerics and Evolutionary Computation, Chapter 4, pp. 157--185, Springer-Verlag, Heidelberg, Germany, Studies in Computational Intelligence Vol. 447, 2013, ISBN 978-3-642-32725-4.
  271. Michael Emmerich and André Deutz. Time Complexity and Zeros of the Hypervolume Indicator Gradient Field, in Oliver Schütze, Carlos A. Coello Coello, Alexandru-Adrian Tantar, Emilia Tantar, Pascal Bouvry, Pierre Del Moral and Pierrick Legrand (editors), EVOLVE - A Bridge between Probability, Set Oriented Numerics, and Evolutionary Computation III, pp. 169--193, Springer. Studies in Computational Intelligence Vol. 500, Heidelberg, Germany, 2014, ISBN 978-3-319-01459-3 .
  272. Orhan Engin, Cengiz Kahraman and Mustafa Kerim Yilmaz. A Scatter Search Method for Multiobjective Fuzzy Permutation Flow Shop Scheduling Problem: A Real World Application, in Uday K. Chakraborty (editor), Computational Intelligence in Flow Shop and Job Shop Scheduling, pp. 169--189, Springer, Studies in Computational Intelligence (SCI), Berlin, 2009, ISBN 978-3-642-02835-9.
  273. Mark Erickson, Alex Mayer and Jeffrey Horn. The Niched Pareto Genetic Algorithm 2 Applied to the Design of Groundwater Remediation Systems. In Eckart Zitzler, Kalyanmoy Deb, Lothar Thiele, Carlos A. Coello Coello and David Corne, editors, First International Conference on Evolutionary Multi-Criterion Optimization, pages 681-695. Springer-Verlag. Lecture Notes in Computer Science No. 1993, 2001.
  274. Anna Esparcia-Alcázar, Ana I. Martínez-García, José Miguel Albarracín-Guillem, Marta E. Palmer-Gato, Juan Julián Merelo Guervós, Ken Sharman and Eva Alfaro-Cid. A Multiobjective Evolutionary Algorithm for the Linear Shelf Space Allocation Problem, in Günter Rudolph, Thomas Jansen, Simon Lucas, Carlo Poloni and Nicola Beume (editors), Parallel Problem Solving from Nature--PPSN X, pp. 1001--1010, Springer, Lecture Notes in Computer Science Vol. 5199, Dortmund, Germany, September 2008.
  275. Richard M. Everson and Jonathan E. Fieldsend. Multi-Objective Optimisation for Receiver Operating Characteristic Analysis, in Yaochu Jin (editor), Multi-Objective Machine Learning, pp. 533--556, Springer. Studies in Computational Intelligence, Volume 16, 2006.
  276. F

  277. Yuanyuan Fan, Qingzhong Liang and Sanyou Zeng. A Multi-objective Differential Evolutionary Algorithm Applied in Antenna Optimal Problem, in Zhenhua Li, Xiang Li, Yong Liu and Zhihua Cai (editors), Computational Intelligence and Intelligent Systems, 6th International Symposium, ISICA 2012, pp. 250--257, Springer. Communications in Computer and Information Science Vol. 316, Wuhan, China, October 27-28, 2012.
  278. Zhiming Fang. A Quantum Immune Algorithm for Multiobjective Parallel Machine Scheduling, in Ying Tan, Yuhui Shi and Kay Chen Tan (editors), Advances in Swarm Intelligence, First International Conference, ICSI 2010, pp. 321--327, Springer. Lecture Notes in Computer Science Vol. 6145, Beijing, China, June 12-15, 2010.
  279. Han Fangyu, Jia Xiaoping and Tan Xinsun. Two Key Support Tools for Environmentally Friendly Process Optimal Synthesis, in Proceedings of PSE 2003, The 8th International Symposium on Process Systems Engineering, pp. 1274--1279, Elsevier, Computer Aided Process Engineering Book Series 15, Kunming, China, 2003.
  280. Ali Farhang-Mehr and Shapour Azarm. Multi-Objective Genetic Algorithms With Concepts from Statistical Thermodynamics, in Lee Spector, Erik D. Goodman, Annie Wu, William B. Langdon, Hans-Michael Voigt, Mitsuo Gen, Sandip Sen, Marco Dorigo, Shahram Pezeshk, Max. H. Garzon and Edmund Burke (editors), Proceedings of the Genetic and Evolutionary Computation Conference (GECCO'2001), p. 1075, Morgan Kaufmann Publishers, San Francisco, California, July 2001.
  281. Alfredo R. de Faria. Compliance and Buckling Optimization of Structures under Multiple Load Cases, in Nadia Nedjah and Luiza de Macedo Mourelle (editors), Real-World Multi-Objective System Engineering, pp. 101--138, Nova Science Publishers, New York, 2005.
  282. Marco Farina and Paolo Di Barba. Optimal Design of Industrial Electromagnetic Devices: A Multiobjective Evolutionary Approach, in Carlos A. Coello Coello and Gary B. Lamont (editors), Applications of Multi-Objective Evolutionary Algorithms, pp. 53--78, World Scientific, Singapore, 2004.
  283. Michael Farnsworth, Elhadj Benkhelifa, Ashutosh Tiwari and Meiling Zhu. A Novel Approach to Multi-level Evolutionary Design Optimization of a MEMS Device, in Gianluca Tempesti, Andy M. Tyrrell and Julian F. Miller (editors), Evolvable Systems: From Biology to Hardware, 9th International Conference, ICES 2010, pp. 322--334, Springer-Verlag. Lecture Notes in Computer Science Vol. 6274, York, UK, September 2010.
  284. Xiang Feng and Francis C. M. Lau. Nature-Inspired Particle Mechanics Algorithm for Multi-Objective Optimization, in Chi-Keong Goh, Yew-Soon Ong and Kay Chen Tan (editors), Multi-Objective Memetic Algorithms, chapter 12, pp. 255--277, Springer, Studies in Computational Intelligence, Vol. 171, Berlin, Germany, 2009. ISBN 978-3-540-88050-9.
  285. Francisco Venícius Fernandes Barros, Eduardo Sávio Passos Rodrigues Martins, Luiz Sérgio Vasconcelos Nascimento and Dirceu Silveira Reis. Use of Multiobjective Evolutionary Algorithms in Water Resources Engineering. in Nadia Nedjah, Leandro dos Santos Coelho, and Luiza de Macedo de Mourelle, (editors), Multi-Objective Swarm Intelligent Systems. Theory & Experiences, chapter 3, pp. 45--82, Springer, Studies in Computational Intelligence, Vol. 261, Berlin, Germany, 2010. ISBN 978-3-642-05164-7.
  286. Filomena Ferrucci, Carmine Gravino and Federica Sarro. How Multi-Objective Genetic Programming Is Effective for Software Development Effort Estimation?, in Myra B. Cohen and Mel Ó Cinnéide (editors), Search Based Software Engineering, Third International Symposium, SSBSE 2011, pp. 274--275, Springer. Lecture Notes in Computer Science Vol. 6956, Szeged, Hungary, September 10-12, 2011.
  287. Sevan Gregory Ficici. Multiobjective Optimization and Coevolution, in Joshua Knowles, David Corne and Kalyanmoy Deb (Editors), Multi-Objective Problem Solving from Nature: From Concepts to Applications, pp. 31--52, Springer, Berlin, 2008, ISBN 978-3-540-72963-1.
  288. Jonathan E. Fieldsend and Sameer Singh. Optimizing Forecast Model Complexity using Multi-Objective Evolutionary Algorithms, in Carlos A. Coello Coello and Gary B. Lamont (editors), Applications of Multi-Objective Evolutionary Algorithms, pp. 675--700, World Scientific, Singapore, 2004.
  289. Jonathan E. Fieldsend. Regression Error Characteristic Optimisation of Non-Linear Models, in Yaochu Jin (editor), Multi-Objective Machine Learning, pp. 103--123, Springer. Studies in Computational Intelligence, Volume 16, 2006.
  290. Jonathan E. Fieldsend and Richard M. Evereson. Multiobjective Supervised Learning , in Joshua Knowles, David Corne and Kalyanmoy Deb (Editors), Multi-Objective Problem Solving from Nature: From Concepts to Applications, pp. 155--176, Springer, Berlin, 2008, ISBN 978-3-540-72963-1.
  291. Jonathan E. Fieldsend. Optimizing Decision Trees Using Multi-objective Particle Swarm Optimization. in Carlos Artemio Coello Coello, Satchidananda Dehuri and Susmita Ghosh, (editors), Swarm Intelligence for Multi-objective Problems in Data Mining, chapter 5, pp. 93--114, Springer. Studies in Computational Intelligence. Vol. 242, Berlin, 2009.
  292. Jonathan Fieldsend and Richard Everson. Visualising High-Dimensional Pareto Relationships in Two-Dimensional Scatterplots, in Robin C. Purshouse, Peter J. Fleming, Carlos M. Fonseca, Salvatore Greco and Jane Shaw (editors), Evolutionary Multi-Criterion Optimization, 7th International Conference, EMO 2013, pp. 558--572, Springer. Lecture Notes in Computer Science Vol. 7811, Sheffield, UK, March 19-22, 2013.
  293. Bogdan Filipic, Tea Tusar and Erkki Laitinen. Computer-Assisted Analysis of a Metallurgical Production Process in View of Multiple Objectives, in Bogdan Filipic and Jurij Silc (editors), Bioinspired Optimization Methods and their Applications, pp. 167--176, Jozef Stefan Institute, October 2006.
  294. Bogdan Filipic and Matjaz Depolli. Parallel Evolutionary Computation Framework for Single- and Multiobjective Optimization, in Roman Trobec, Marián Vajtersic and Peter Zinterhof (editors), Parallel Computing. Numerics, Applications, and Trends, pp. 217--240, Springer, London, UK, 2009.
  295. Bogdan Filipic, Risto Vesanen and Erkki Laitinen. Bi-objective Resource Allocation in Spatially Distributed Communication Networks, in Bogdan Filipic and Jurij Silc (editors), Bioinspired Optimization Methods and Their Applications, Proceedings of the Fifth International Conference on Bioinspired Optimization Methods and their Applications, BIOMA 2012, pp. 245--255, Jozef Stefan Institute, Bohinj, Slovenia, May 2012.
  296. Carlos M. Fonseca and Peter J. Fleming. Multiobjective Optimization. In Thomas Bäck, David B. Fogel and Zbigniew Michalewicz, editors, Handbook of Evolutionary Computation, volume 1, pages C4.5:1-C4.5:9. Institute of Physics Publishing and Oxford University Press, 1997.
  297. C.M. Fonseca and P.J. Fleming. Multiobjective genetic algorithms, in A.M.S. Zalzala and P.J. Fleming (editors), Genetic Algorithms in Engineering Systems, Chapter 3, pp. 63--78, The Institution of Electrical Engineers. Control Engineering Series 55, Bath, UK, 1997.
  298. Viviane Grunert da Fonseca, Carlos M. Fonseca and Andreia O. Hall. Inferential Performance Assessment of Stochastic Optimisers and the Attainment Function. In Eckart Zitzler, Kalyanmoy Deb, Lothar Thiele, Carlos A. Coello Coello and David Corne, editors, First International Conference on Evolutionary Multi-Criterion Optimization, pages 213-225. Springer-Verlag. Lecture Notes in Computer Science No. 1993, 2001.
  299. L.G. Fonseca, H.J.C. Barbosa and A.C.C. Lemonge. On Similarity-Based Surrogate Models for Expensive Single- and Multi-objective Evolutionary Optimization. in Yoel Tenne and Chi-Keong Goh, (editors), Computational Intelligence in Expensive Optimization Problems, pp. 219--248, Springer, Berlin, Germany, 2010. ISBN 978-3-642-10700-9.
  300. Viviane Grunert da Fonseca and Carlos M. Fonseca. The Attainment-Function Approach to Stochastic Multiobjective Optimizer Assessment and Comparison, in Thomas Bartz-Beielstein, Marco Chiarandini, Luís Paquete and Mike Preuss (editors), Experimental Methods for the Analysis of Optimization Algorithms, Chapter 5, pp. 103--130, Springer, Heidelberg, 2010.
  301. Viviane Grunert da Fonseca and Carlos M. Fonseca. The Relationship between the Covered Fraction, Completeness and Hypervolume Indicators, in Jin-Kao Hao, Pierrick Legrand, Pierre Collet, Nicolas Monmarché, Evelyne Lutton and Marc Schoenauer (editors), Artificial Evolution, 10th International Conference, Evolution Artificielle, EA 2011, pp. 25-36, Springer. Lecture Notes in Computer Science Vol. 7401, Angers, France, October 24-26, 2012.
  302. Helio Freire, P. B. de Moura Oliveira, E. J. Solteiro Pires and Maximino Bessa. Corner Based Many-Objective Optimization, in German Terrazas, Fernando E. B. Otero and Antonio D. Masegosa (editors), Nature Inspired Cooperative Strategies for Optimization (NICSO 2013), Learning, Optimization and Interdisciplinary Applications, pp. 125--139, Springer. Studies in Computational Intelligence Vol. 512, University of Kent, Canterbury, United Kingdom, September 02-04, 2014.
  303. Alex A. Freitas. A Review of evolutionary Algorithms for Data Mining, in Oded Maimon and Lior Rokach (editors), Soft Computing for Knowledge Discovery and Data Mining, pp. 79--111, Springer, 2008.
  304. Fabio Freschi, Carlos A. Coello Coello and Maurizio Repetto, Multiobjective Optimization and Artificial Immune Systems: A Review, in Hongwei Mo (editor), Handbook of Research on Artificial Immune Systems and Natural Computing: Applying Complex Adaptive Technologies, pp. 1--21, Medical Information Science Reference, Hershey, New York, 2009, ISBN 978-1-60566-310-4 .
  305. Tobias Friedrich, Christian Horoba and Frank Neumann. Runtime Analyses for Using Fairness in Evolutionary Multi-Objective Optimization, in Günter Rudolph, Thomas Jansen, Simon Lucas, Carlo Poloni and Nicola Beume (editors), Parallel Problem Solving from Nature--PPSN X, pp. 671--680, Springer, Lecture Notes in Computer Science Vol. 5199, Dortmund, Germany, September 2008.
  306. Tobias Friedrich, Karl Bringmann, Thomas Voß and Christian Lgel. The Logarithmic Hypervolume indicator, in Hans-Georg Beyer and William B. Langdon (editors), Proceedings of the 2011 ACM SIGEVO Foundations of Genetic Algorithms XI (FOGA'2011), pp. 81--92, ACM Press, Schwarzenberg, Austria, January 5--9, 2011.
  307. Juan Carlos Fuentes Cabrera and Carlos A. Coello Coello. Micro-MOPSO: A Multi-Objective Particle Swarm Optimizer That Uses a Very Small Population Size. in Nadia Nedjah, Leandro dos Santos Coelho and Luiza de Macedo de Mourelle, (editors), Multi-Objective Swarm Intelligent Systems. Theory & Experiences, chapter 4, pp. 83--104, Springer, Studies in Computational Intelligence, Vol. 261, Berlin, Germany, 2010. ISBN 978-3-642-05164-7.
  308. Yoshikazu Fukuyama, Hamid Ghezelayagh, Kwang Y. Lee, Chen-Ching Liu, Yong-Hua Song and Ying Xiao. Power System Controls. In Kwang Y. Lee and Mohamed A. El-Sharkawi, (editors), Modern Heuristic Optimization Techniques. Theory and Applications to Power Systems, chapter 16, pp. 403--469. Wiley-Interscience, USA, 2008.
  309. Daniel Funke and Florian Kerschbaum. Privacy-Preserving Multi-Objective Evolutionary Algorithms. in Robert Schaefer, Carlos Cotta, Joanna Kolodziej and Günter Rudolph (editors), Parallel Problem Solving from Nature--PPSN XI, 11th International Conference, Proceedings, Part II, pp. 41--50, Springer, Lecture Notes in Computer Science Vol. 6239, Kraków, Poland, September, 2010.
  310. Tomonari Furukawa, Gamini Dissanayake and Hugh F. Durrant-Whyte. Application of Multi-Objective Evolutionary Algorithms in Autonomous Vehicles Navigation, in Carlos A. Coello Coello and Gary B. Lamont (editors), Applications of Multi-Objective Evolutionary Algorithms, pp. 125--153, World Scientific, Singapore, 2004.
  311. Tomonari Furukawa, Chen Jian Ken Lee and John G. Michopoulos. Regularization for Parameter Identification Using Multi-Objective Optimization, in Yaochu Jin (Editor), Multi-Objective Machine Learning, pp. 125--149, Springer. Studies in Computational Intelligence, Volume 16, Berlin, 2006.
  312. G

  313. Ewa Gajda, Robert Schaefer and Maciej Smolka. Evolutionary Multiobjective Optimization Algorithm as a Markov System. in Robert Schaefer, Carlos Cotta, Joanna Kolodziej and Günter Rudolph (editors) Parallel Problem Solving from Nature--PPSN XI, 11th International Conference, Proceedings, Part I, pp. 617--626, Springer, Lecture Notes in Computer Science Vol. 6238, Kraków, Poland, September, 2010.
  314. Ewa Gajda-Zagórska. Multiobjective Evolutionary Strategy for Finding Neighbourhoods of Pareto-optimal Solutions, in Anna I. Esparcia-Alcázar et al. (editors), Applications of Evolutionary Computation, 16th European Conference, EvoApplications 2013, pp. 112--121, Springer. Lecture Notes in Computer Science Vol. 7835, Vienna, Austria, April 3-5, 2013.
  315. B. Galvan, G. Winter, D. Greiner, D. Salazar and M. Méndez. New Evolutionary Methodologies for Integrated Safety System Design and Maintenance Optimization, in Gregory Levitin (editor), Computational Intelligence in Reliability Engineering. Evolutionary Techniques in Reliability Analysis and Optimization, pp. 151--190, Springer, Heidelberg, 2007.
  316. Luca Maria Gambardella, Éric Taillard and Giovanni Agazzi. MACS-VRPTW: A Multiple Ant Colony System for Vehicle Routing Problems with Time Windows. In David Corne, Marco Dorigo and Fred Glover, editors, New Ideas in Optimization, pages 63-76. McGraw-Hill, 1999.
  317. X. Gandibleux, N. Mezdaoui and N. Fréville. A tabu search procedure to solve combinatorial optimisation problems. In R. Caballero, F. Ruiz and R.E. Steuer, editors, Advances in Multiple Objective and Goal Programming, volume 455 of Lecture Notes in Economics and Mathematical Systems, pages 291-300. Springer-Verlag, 1997.
  318. Xavier Gandibleux, Hiroyuki Morita and Naoki Katoh. The Supported Solutions Used as a Genetic Information in a Population Heuristic. In Eckart Zitzler, Kalyanmoy Deb, Lothar Thiele, Carlos A. Coello Coello and David Corne, editors, First International Conference on Evolutionary Multi-Criterion Optimization, pages 429--442. Springer-Verlag. Lecture Notes in Computer Science No. 1993, 2001.
  319. Xavier Gandibleux, Hiroyuki Morita and Naoki Katoh. Evolutionary Operators Based on Elite Solutions for Bi-Objective Combinatorial Optimization, in Carlos A. Coello Coello and Gary B. Lamont (editors), Applications of Multi-Objective Evolutionary Algorithms, pp. 555--579, World Scientific, Singapore, 2004.
  320. X. Z. Gao, X. Wang and S. J. Ovaska. Harmony Search Methods for Multi-modal and Constrained Optimization. in Zong Woo Geem, (editor), Music-Inspired Harmony Search Algorithm, pp. 39--51, Springer. Studies in Computational Intelligence. Vol. 191, Berlin, Germany, 2009.
  321. Ying Gao, Lingxi Peng, Fufang Li, MiaoLiu and Xiao Hu. Velocity-Free Multi-Objective Particle Swarm Optimizer with Centroid for Wireless Sensor Network Optimization, in Jingsheng Lei, Fu Lee Wang, Hepu Deng and Duoqian Miao (editors), Artificial Intelligence and Computational Intelligence, 4th International Conference, AICI 2012, pp. 682--689, Springer. Lecture Notes in Artificial Intelligence Vol. 7530, Chengdu, China, October 26-28, 2012, ISBN 978-3-642-33477-1.
  322. Nicolás García-Pedrajas. Cooperative Coevolution of Neural Networks and Ensembles of Neural Networks, in Yaochu Jin (Editor), Multi-Objective Machine Learning, pp. 465--490, Springer. Studies in Computational Intelligence, Volume 16, Berlin, 2006.
  323. Abel Garcia Najera and John A. Bullinaria. Bi-objective Optimization for the Vehicle Routing Problem with Time Windows: Using Route Similarity to Enhance Performance, in Matthias Ehrgott, Carlos M. Fonseca, Xavier Gandibleux, Jin-Kao Hao and Marc Sevaux (editors), Evolutionary Multi-Criterion Optimization. 5th International Conference, EMO 2009, pp. 275--289, Springer. Lecture Notes in Computer Science Vol. 5467, Nantes, France, April 2009.
  324. Abel Garcia-Najera and John A. Bullinaria. Optimizing Delivery Time in Multi-Objective Vehicle Routing Problems with Time Windows. in Robert Schaefer, Carlos Cotta, Joanna Kolodziej and Günter Rudolph, (editors) Parallel Problem Solving from Nature--PPSN XI, 11th International Conference, Proceedings, Part II, pp. 51--60, Springer, Lecture Notes in Computer Science Vol. 6239, Kraków, Poland, September, 2010.
  325. Sandra García, David Quintana, Inés M. Galván and Pedro Isasi. Portfolio Optimization Using SPEA2 with Resampling, in Hujun Yin, Wenjia Wang and Victor Rayward-Smith (editors), Intelligent Data Engineering and Automated Learning-IDEAL 2011, 12th International Conference, pp. 127--134, Springer. Lecture Notes in Computer Science Vol. 6936, Norwich, UK, September 7-9, 2011.
  326. Sanjeev Garg. Array Informatics using Multi-Objective Genetic Algorithms: From Gene Expressions to Gene Networks, in Rangaiah Gade Pandu (editor), Multi-Objective Optimization Techniques and Applications in Chemical Engineering, chapter 12, pp. 363--400, World Scientific, Singapore, 2009, ISBN 978-981-283-651-9 .
  327. Deon Garrett, Dipankar Dasgupta, Joseph Vannucci and James Simien. Applying Hybrid Multiobjective Evolutionary Algorithms to the Sailor Assignment Problem, in Lakhmi C. Jain, Vasile Palade and Dipti Srinivasan (editors), Advances in Evolutionary Computing for System Design, pp. 269--301, Springer, Studies in Computational Intelligence Vol. 66, 2007.
  328. Deon Garrett. PMF: A Multicore-Enabled Framework for the Construction of Metaheuristics for Single and Multiobjective Optimization, in Robert Schaefer, Carlos Cotta, Joanna Kolodziej and Günter Rudolph (editors), Parallel Problem Solving from Nature--PPSN XI, 11th International Conference, Proceedings, Part II, pp. 351--360, Springer, Lecture Notes in Computer Science Vol. 6239, Kraków, Poland, September, 2010.
  329. António Gaspar-Cunha and José A. Covas. The Use of Evolutionary Algorithms to Solve Practical Problems in Polymer Extrusion, in Carlos A. Coello Coello and Gary B. Lamont (editors), Applications of Multi-Objective Evolutionary Algorithms, pp. 177--199, World Scientific, Singapore, 2004.
  330. António Gaspar-Cunha, José Ferreira, José António Cuvas and Carlos Fonseca. Extending Optimization Algorithms to Complex Engineering Problems, in António Gaspar-Cunha and José António Covas (editors), Optimization in Polymer Processing, Chapter 4, pp. 59--83, Nova Science Publishers, New York, USA, 2011, ISBN 978-1-61122-818-2 .
  331. António Gaspar-Cunha, José António Covas and Bruno Vergnes and Francoise Berzin. Reactive Extrusion—Optimization of Representative Processes, in António Gaspar-Cunha and José António Covas (editors), Optimization in Polymer Processing, Chapter 6, pp. 115--143, Nova Science Publishers, New York, USA, 2011, ISBN 978-1-61122-818-2 .
  332. M.J. Geiger. Genetic Algorithms for Multiple Objective Vehicle Routing, in Jorge Pinho de Sousa (Editor), Proceedings of the 4th Metaheuristics International Conference (MIC'2001), pp. 349--354, Porto, Portugal, Program Operational Ciencia, Tecnologia, Inovaçao do Quadro Comunitário de Apoio III de Fundaçao para a Ciencia e Tecnologia, July 2001
  333. Martin Josef Geiger and Sanja Petrovic. An Interactive Multicriteria Optimisation Approach to Scheduling, in Max Bramer and Vladan Devedzic (editors), Artificial Intelligence Applications and Innovations, pp. 475--484, Kluwer Academic Publishers, Boston/Dordrecht/London, 2004.
  334. Martin Josef Geiger and Wolf Wenger. Market Based Allocation of Transportation Orders to Vehicles in Adaptive Multi-objective Vehicle Routing, in Carlos Cotta, Marc Sevaux and Kenneth Sörensen (editors), Adaptive and Multilevel Metaheuristics, pp. 119--132, Springer, Studies in Computational Intelligence Vol. 136, 2008.
  335. Martin Josef Geiger. Multi-criteria Curriculum-Based Course Timetabiling--A Comparison of a Weighted Sum and a Reference Point Based Approach, in Matthias Ehrgott, Carlos M. Fonseca, Xavier Gandibleux, Jin-Kao Hao and Marc Sevaux (editors), Evolutionary Multi-Criterion Optimization. 5th International Conference, EMO 2009, pp. 290--304, Springer. Lecture Notes in Computer Science Vol. 5467, Nantes, France, April 2009.
  336. Huantong Geng, Min Zhang, Linfeng Huang and Xufa Wang. Infeasible Elitists and Stochastic Ranking Selection in Constrained Evolutionary Multi-objective Optimization, in Tzai-Der Wang, Xiaodong Li, Shu-Heng Chen, Xufa Wang, Hussein Abbass, Hitoshi Iba, Guoliang Chen and Xin Yao (editors), Simulated Evolution and Learning, 6th International Conference, SEAL 2006, pp. 336--344, Springer. Lecture Notes in Computer Science Vol. 4247, Hefei, China, October 2006.
  337. Huantong Geng, Haifeng Zhu, Rui Xing and Tingting Wu. A Novel Hybrid Evolutionary Algorithm for Solving Multi-Objective Optimization Problems, in De-Shuang Huang, Changjun Jiang, Vitoantonio Bevilacqua and Juan Carlos Figueroa (editors), Intelligent Computing Technology, 8th International Conference, ICIC 2012, pp. 128--136, Springer. Lecture Notes in Computer Science Vol. 7389, Huangshan, China, July 25-29, 2012.
  338. Paraskevi S. Georgiadou, Ioannis A. Papazoglou, Chris T. Kiranoudis and Nikolaos C. Markatos. Multi-Objective Emergency Response Optimization Around Chemical Plants, in Rangaiah Gade Pandu (editor), Multi-Objective Optimization Techniques and Applications in Chemical Engineering, chapter 11, pp. 339--362, World Scientific, Singapore, 2009, ISBN 978-981-283-651-9 .
  339. Ioannis Giagkiozis, Robin C. Purshouse and Peter J. Fleming. Generalized Decomposition, in Robin C. Purshouse, Peter J. Fleming, Carlos M. Fonseca, Salvatore Greco and Jane Shaw (editors), Evolutionary Multi-Criterion Optimization, 7th International Conference, EMO 2013, pp. 428--442, Springer. Lecture Notes in Computer Science Vol. 7811, Sheffield, UK, March 19-22, 2013.
  340. Kyriakos C. Giannakoglou and Ioannis C. Kampolis. Multilevel Optimization Algorithms Based on Metamodel- and Fitness Inheritance-Assisted Evolutionary Algorithms, in Yoel Tenne and Chi-Keong Goh, (editors), Computational Intelligence in Expensive Optimization Problems, pp. 61--84, Springer, Berlin, Germany, 2010. ISBN 978-3-642-10700-9.
  341. Kashif Gill, Abedalrazq Khalil, Yasir Kaheil and Dennis Moon. Multiobjective Evolutionary Optimization and Machine Learning: Application to Renewable Energy Predictions, in Sio-Iong Ao, Burghard Rieger and Mahyar A. Amouzegar (editors), Machine Learning and Systems Engineering, pp. 71--82, Springer. Lecture Notes in Electrical Engineering Vol. 68, Dordrecht, 2010, ISBN 978-90-481-9418-6.
  342. Chi Keong Goh, Wei Ling Lim, Yong Han Chew and Kay Chen Tan. A Multi-Objective Evolutionary Algorithm for Channel Routing Problems, in Keshav P. Dahal, Kay Chen Tan and Peter I Cowling (editors), Evolutionary Scheduling, pp. 405--436, Springer, Studies in Computational Intelligence (SCI), Berlin, 2007, ISBN 3-540-48582-1 .
  343. Chi Keong Goh and Kay Chen Tan. Evolving the Tradeoffs between Pareto-Optimality and Robustness in Multi-Objective Evolutionary Algorithms, in Shengxiang Yang, Yew Soon Ong and Yaochu Jin (editors), Evolutionary Computation in Dynamic and Uncertain Environments, pp. 457--478, Springer, 2007, ISBN 978-3-540-49772-1 .
  344. Marcilyanne Moreira Gois, Danilo Sipoli Sanches, Jean Martins, João Bosco A. London Junior and Alexandre Cláudio Botazzo Delbem. Multi-Objective Evolutionary Algorithm with Node-Depth Encoding and Strength Pareto for Service Restoration in Large-Scale Distribution Systems, in Robin C. Purshouse, Peter J. Fleming, Carlos M. Fonseca, Salvatore Greco and Jane Shaw (editors), Evolutionary Multi-Criterion Optimization, 7th International Conference, EMO 2013, pp. 771--786, Springer. Lecture Notes in Computer Science Vol. 7811, Sheffield, UK, March 19-22, 2013.
  345. David E. Goldberg and Liwei Wang. Adaptive Niching via Coevolutionary Sharing, in D. Quagliarella, J. Périaux, C. Poloni and G. Winter (eds.), Genetic Algorithms and Evolution Strategies in Engineering and Computer Science. Recent Advances and Industrial Applications, chapter 2, pp. 21--38, John Wiley & Sons, Chichester, UK, 1998.
  346. Robert Goldberg and Natalie Hammerman. Multi-criteria Optimization of Finite State Automata: Maximizing Performance while Minimizing Description Length, in Ajith Abraham, Lakhmi Jain and Robert Goldberg (editors), Evolutionary Multiobjective Optimization: Theoretical Advances And Applications, pp. 255--271, Springer-Verlag, London, ISBN 1-85233-787-7, 2005.
  347. Pedro Gómez-Meneses, Marcus Randall and Andrew Lewis. A Multi-Objective Extremal Optimisation Approach Applied to RFID Antenna Design, in Oliver Schütze, Carlos A. Coello Coello, Alexandru-Adrian Tantar, Emilia Tantar, Pascal Bouvry, Pierre Del Moral and Pierrick Legrand (editors), EVOLVE - A Bridge between Probability, Set Oriented Numerics, and Evolutionary Computation II, pp. 431--446, Springer, Advances in Intelligent Systems and Computing Vol. 175, Berlin, Germany, 2012, ISBN 978-3-642-31519-0.
  348. L.F. Gonzalez, J. Périaux, K. Srinivas and E.J. Whitney. Evolutionary Optimization Tools for Multi Objective Design in Aerospace Engineering: From Theory to MDO Applications, in William Annicchiarico, Jacques Périaux, Miguel Cerrolaza and Gabriel Winter (editors), Evolutionary Algorithms and Intelligent Tools in Engineering Optimization, pp. 268--293, WIT Press, CIMNE Barcelona, Southampton, Boston, 2005, ISBN 1-84564-038-1 .
  349. David L. González-Álvarez and Miguel A. Vega-Rodríguez. Hybrid Multiobjective Artificial Bee Colony with Differential Evolution Applied to Motif Finding, in Leonardo Vanneschi, William S. Bush and Mario Giacobini (editors), Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics, 11th European Conference, EvoBIO 2013, pp. 68--79, Springer. Lecture Notes in Computer Science Vol. 7833, Vienna, Austria, April 3-5, 2013.
  350. Rajni Goyal, Shiv Prasad Yadav and Amar Kishor. Design of Boolean Functions Satisfying Multiple Criteria by NSGA-II, in Kusum Deep, Atulya Nagar, Millie Pant and Jagdish Chand Bansal (editors), Proceedings of the International Conference on Soft Computing for Problem Solving (SocProS 2011), pp. 461--468, Springer. Advances in Intelligent and Soft Computing Vol. 130, December 20-22, 2011.
  351. Gordon Govan, Jakub Chlanda, David Corne, Alex Xenos and Pierluigi Frisco. Finding Biologically Plausible Complex Network Topologies with a New Evolutionary Approach for Network Generation, in Michael Emmerich, André Deutz, Oliver Schütze, Thomas Bäck, Emilia Tantar, Alexandru-Adrian Tantar, Pierre del Moral, Pierrick Legrand, Pascal Bouvry and Carlos Coello Coello (editors), EVOLVE - A Bridge between Probability, Set Oriented Numerics, and Evolutionary Computation IV, pp. 59--73, Springer, Advances in Intelligent Systems and Computing Vol. 227, Heidelberg, Germany, July 10-13, 2013, ISBN 978-3-319-01127-7.
  352. Tobias Glasmachers, Tom Schaul and Jürgen Schmidhuber. A Natural Evolution Strategy for Multi-objective Optimization. in Robert Schaefer, Carlos Cotta, Joanna Kolodziej and Günter Rudolph (editors) Parallel Problem Solving from Nature--PPSN XI, 11th International Conference, Proceedings, Part I, pp. 627--636, Springer, Lecture Notes in Computer Science Vol. 6238, Kraków, Poland, September 2010.
  353. Lars Graening, Nikola Aulig and Markus Olhofer. Towards Directed Open-Ended Search by a Novelty Guided Evolution Strategy. in Robert Schaefer, Carlos Cotta, Joanna Kolodziej, and Günter Rudolph (editors), Parallel Problem Solving from Nature--PPSN XI, 11th International Conference, Proceedings, Part II, pp. 71--80, Springer, Lecture Notes in Computer Science Vol. 6239, Kraków, Poland, September 2010.
  354. Salvatore Greco, Roman Slowiński, José Rui Figueira and Vincent Mousseau. Robust Ordinal Regression, in Matthias Ehrgott, José Rui Figueira and Salvatore Greco (editors), Trends in Multiple Criteria Decision Analysis, Chapter 9, pp. 241--283, Springer, International Series in Operations Research and Management Science, 2010, ISBN 978-1-4419-5903-4.
  355. Mardé Greeff and Andries P. Engelbrecht. Dynamic Multi-objective Optimisation Using PSO. in Nadia Nedjah, Leandro dos Santos Coelho and Luiza de Macedo de Mourelle, (editors), Multi-Objective Swarm Intelligent Systems. Theory & Experiences, chapter 5, pp. 105--123, Springer, Studies in Computational Intelligence, Vol. 261, Berlin, Germany, 2010. ISBN 978-3-642-05164-7.
  356. D. Greiner, G. Winter, J.M. Emperador and B.Galván. A Comparative Analysis of "Controlled Elitism" in the NSGA-II Applied to Frame Optimization, in Tadeusz Burczyński and Andrzej Osyczka (editors), IUTAM Symposium on Evolutionary Methods in Mechanics, pp. 101--110, Kluwer Academic Publishers, Dordrecht/Boston/London, 2004, ISBN 1-4020-2266-2.
  357. David Greiner, Blas Galván, Juan J. Aznárez, Orlando Maeso and Gabriel Winter. Robust Design of Noise Attenuation Barriers with Evolutionary Multiobjective Algorithms and the Boundary Element Method, in Matthias Ehrgott, Carlos M. Fonseca, Xavier Gandibleux, Jin-Kao Hao and Marc Sevaux (editors), Evolutionary Multi-Criterion Optimization. 5th International Conference, EMO 2009, pp. 261--274, Springer. Lecture Notes in Computer Science Vol. 5467, Nantes, France, April 2009.
  358. Christian Grimme, Joachim Lepping and Alexander Papaspyrou. The Parallel Predator-Prey Model: A Step towards Practical Application, in Günter Rudolph, Thomas Jansen, Simon Lucas, Carlo Poloni and Nicola Beume (editors), Parallel Problem Solving from Nature--PPSN X, pp. 681--690, Springer, Lecture Notes in Computer Science Vol. 5199, Dortmund, Germany, September 2008.
  359. Christian Grimme, Joachim Lepping and Alexander Papaspyrou. Adapting to the Habitat: On the Integration of Local Search into the Predator-Prey Model, in Matthias Ehrgott, Carlos M. Fonseca, Xavier Gandibleux, Jin-Kao Hao and Marc Sevaux (editors), Evolutionary Multi-Criterion Optimization. 5th International Conference, EMO 2009, pp. 510--524, Springer. Lecture Notes in Computer Science Vol. 5467, Nantes, France, April 2009.
  360. Christian Grimme, Markus Kemmerling and Joachim Lepping. On the Integration of Theoretical Single-Objective Scheduling Results for Multi-objective Problems, in Emilia Tantar, Alexandru-Adrian Tantar, Pascal Bouvry, Pierre Del Moral, Pierrick Legrand, Carlos A. Coello Coello and Oliver Schütze (editors), EVOLVE - A bridge between Probability, Set Oriented Numerics and Evolutionary Computation, Chapter 10, pp. 333--363, Springer-Verlag, Heidelberg, Germany, Studies in Computational Intelligence Vol. 447, 2013, ISBN 978-3-642-32725-4.
  361. R. Groppetti and R. Muscia. On a Genetic Multiobjective Approach for the Integration and Optimization of Assembly Product Design and Process Planning. In P. Chedmail, J. C. Bocquet and D. Dornfeld, editors, Integrated Design and Manufacturing in Mechanical Engineering, pages 61-70. Kluwer Academic Publishers, The Netherlands, 1997.
  362. Crina Grosan. A Comparison of Several Evolutionary Models and Representations for Multiobjective Optimization, in Nadia Nedjah and Luiza de Macedo Mourelle (editors), Real-World Multi-Objective System Engineering, pp. 53--73, Nova Science Publishers, New York, 2005.
  363. Crina Grosan, Ajith Abraham and Alexander Gelbukh. Evolutionary Method for Nonlinear Systems of Equations, in Alexander Gelbukh and Carlos Alberto Reyes-Garcia (editors), MICAI 2006: Advances in Artificial Intelligence, 5th Mexican International Conference on Artificial Intelligence, pp. 283--293, Springer, Lecture Notes in Artificial Intelligence Vol. 4293, Apizaco, Mexico, November 2006.
  364. Tse Guan Tan, Hui Keng Lau and Jason Teo. Cooperative Versus Competitive Coevolution for Pareto Multiobjective Optimization, in Kang Li, Minrui Fei, George William Irwin and Shiwei Ma (editors), Bio-Inspired Computational Intelligence and Applications, International Conference on Life System Modeling and Simulation, LSMS 2007, pp. 63--72, Springer. Lecture Notes in Computer Science Vol. 4688, Shanghai, China, September 14-17, 2007.
  365. Benoît Guédas, Xavier Gandibleux and Philippe Dépincé. Multi-objective Simulated Annealing for Permutation Flow Shop Problems, in Yong Shi, Shouyang Wang, Gang Kou and Jyrki Wallenius (editors), New State of MCDM in the 21st Century. Selected Papers of the 20th International Conference on Multiple Criteria Decision Making 2009, pp. 69--79, Springer, Lecture Notes in Economics and Mathematical Systems Vol. 648, Berlin, Germany, 2011, ISBN 978-3-642-19694-2.
  366. Mauricio Guevara-Souza and Edgar E. Vallejo. WIGA: Wolbachia Infection Genetic Algorithm for Solving Multi-Objective Optimization Problems, in Félix Castro, Alexander Gelbukh and Miguel González (editors), Advances in Soft Computing and Its Applications, 12th Mexican International Conference on Artificial Intelligence, MICAI 2013, pp. 41--51, Springer. Lecture Notes in Computer Science Vol. 8266, Mexico City, Mexico, November 24-30, 2013.
  367. Abhishek Gupta, Piaras Kelly, Matthias Ehrgott and Simon Bickerton. Applying Bi-level Multi-Objective Evolutionary Algorithms for Optimizing Composites Manufacturing Processes, in Robin C. Purshouse, Peter J. Fleming, Carlos M. Fonseca, Salvatore Greco and Jane Shaw (editors), Evolutionary Multi-Criterion Optimization, 7th International Conference, EMO 2013, pp. 615--627, Springer. Lecture Notes in Computer Science Vol. 7811, Sheffield, UK, March 19-22, 2013.
  368. Luis Fernando Gutierrez-Marfileno, Eunice Ponce-de-Leon, Elva Diaz-Diaz and Leonicio Ibarra-Martinez. Wasp Colony with a Multiobjective Local Optimizer for Dynamic Task Planning in a Production Plant, in Oliver Schütze, Carlos A. Coello Coello, Alexandru-Adrian Tantar, Emilia Tantar, Pascal Bouvry, Pierre Del Moral and Pierrick Legrand (editors), EVOLVE - A Bridge between Probability, Set Oriented Numerics, and Evolutionary Computation II, pp. 447--461, Springer, Advances in Intelligent Systems and Computing Vol. 175, Berlin, Germany, 2012, ISBN 978-3-642-31519-0.
  369. H

  370. Charles R. Haag, Gary B. Lamont, Paul D. Williams and Gilbert L. Peterson. An Artificial Immune System-Inspired Multiobjective Evolutionary Algorithm with Application to the Detection of Distributed Computer Network Intrusions, in Leandro Nunes de Castro and Fernando José Von Zuben and Helder Knidel (editors), Artificial Immune Systems, 6th International Conference, ICARIS 2007, pp. 420--435, Springer. Lecture Notes in Computer Science Vol. 4628, Santos, Brazil, August 2007.
  371. Jussi Hakanen and Timo Aittokoski. Comparison of MCDM and EMO Approaches in Wastewater Treatment Plant Design, in Matthias Ehrgott, Carlos M. Fonseca, Xavier Gandibleux, Jin-Kao Hao and Marc Sevaux (editors), Evolutionary Multi-Criterion Optimization. 5th International Conference, EMO 2009, pp. 350--364, Springer. Lecture Notes in Computer Science Vol. 5467, Nantes, France, April 2009.
  372. Nasreddine Hallan, Graham Kendall and Peter Blanchfield. Solving Multi-objective Optimisation Problems Using the Potential Pareto Regions Evolutionary Algorithm, in Thomas Philip Runarsson, Hans-Georg Beyer, Edmund Burke, Juan J. Merelo-Guervós, L. Darrell Whitley and Xin Yao (editors), Parallel Problem Solving from Nature - PPSN IX, 9th International Conference, pp. 503--512, Springer. Lecture Notes in Computer Science Vol. 4193, Reykjavik, Iceland, September 2006.
  373. Naoki Hamada, Jun Sakuma, Shigenobu Kobayashi and Isao Ono. Functional-Specialization Multi-Objective Real-Coded Genetic Algorithm: FS-MOGA, in Günter Rudolph, Thomas Jansen, Simon Lucas, Carlo Poloni and Nicola Beume (editors), Parallel Problem Solving from Nature--PPSN X, pp. 691--701, Springer, Lecture Notes in Computer Science Vol. 5199, Dortmund, Germany, September 2008.
  374. Julia Handl and Joshua Knowles. Multi-Objective Clustering and Cluster Validation, in Yaochu Jin (Editor), Multi-Objective Machine Learning, pp. 21--47, Springer. Studies in Computational Intelligence, Volume 16, Berlin, 2006.
  375. Julia Handl and Joshua Knowles. Modes of Problem Solving with Multiple Objectives: Implications for Interpreting the Patero Set and for Decision Making , in Joshua Knowles, David Corne and Kalyanmoy Deb (Editors), Multi-Objective Problem Solving from Nature: From Concepts to Applications, pp. 131--151, Springer, Berlin, 2008, ISBN 978-3-540-72963-1 .
  376. Julia Handl, Simon C. Lovell and Joshua Knowles. Multiobjectivization by Decomposition of Scalar Cost Functions, in Günter Rudolph, Thomas Jansen, Simon Lucas, Carlo Poloni and Nicola Beume (editors), Parallel Problem Solving from Nature--PPSN X, pp. 31--40, Springer, Lecture Notes in Computer Science Vol. 5199, Dortmund, Germany, September 2008.
  377. Julia Handl, Simon C. Lovell and Joshua D. Knowles. Investigations into the Effect of Multiobjectivization in Protein Structure Prediction, in Günter Rudolph, Thomas Jansen, Simon Lucas, Carlo Poloni and Nicola Beume (editors), Parallel Problem Solving from Nature--PPSN X, pp. 702--711, Springer, Lecture Notes in Computer Science Vol. 5199, Dortmund, Germany, September 2008.
  378. Julia Handl and Joshua Knowles. Evidence Accumulation in Multiobjective Data Clustering, in Robin C. Purshouse, Peter J. Fleming, Carlos M. Fonseca, Salvatore Greco and Jane Shaw (editors), Evolutionary Multi-Criterion Optimization, 7th International Conference, EMO 2013, pp. 543--557, Springer. Lecture Notes in Computer Science Vol. 7811, Sheffield, UK, March 19-22, 2013.
  379. Thomas Hanne. Global Multiobjective Optimization with Evolutionary Algorithms: Selection Mechanisms and Mutation Control. In Eckart Zitzler, Kalyanmoy Deb, Lothar Thiele, Carlos A. Coello Coello and David Corne, editors, First International Conference on Evolutionary Multi-Criterion Optimization, pages 197-212. Springer-Verlag. Lecture Notes in Computer Science No. 1993, 2001.
  380. Thomas Hanne and Stefan Nickel. Scheduling in Software Development Using Multiobjective Evolutionary Algorithms. In Graham Kendall, Edmund K. Burke, Sanja Petrovic and Michel Gendreau, editors, Multidisciplinary scheduling: theory and applications. 1st international conference, MISTA'03, pp. 57-81. Springer, New York, NY, August 2005.
  381. M. Hapke, A. Jaszkiewicz and R. Slowinski. Fuzzy multi-mode resource-constrained project scheduling with multiple objectives. In J. Weglarz, editor, Recent Advances in Project Scheduling, chapter 16, pages 355-382. Kluwer Academic Publishers, 1998.
  382. Oscar Harari, Cristina Rubio-Escudero and Igor Zwir. Targeting Differentially Co-regulated Genes by Multiobjective and Multimodal Optimization, in Elena Marchiori, Jason H. Moore and Jagath C. Rajapakse (editors), Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics, 5th European Conference, EvoBIO 2007, pp. 68--77, Springer. Lecture Notes in Computer Science Vol. 4447, Valencia, Spain, April 2007.
  383. Kyle Robert Harrison, Beatrice Ombuki-Berman and Andries P. Engelbrecht. Knowledge Transfer Strategies for Vector Evaluated Particle Swarm Optimization, in Robin C. Purshouse, Peter J. Fleming, Carlos M. Fonseca, Salvatore Greco and Jane Shaw (editors), Evolutionary Multi-Criterion Optimization, 7th International Conference, EMO 2013, pp. 171--184, Springer. Lecture Notes in Computer Science Vol. 7811, Sheffield, UK, March 19-22, 2013.
  384. Md. Rafiul Hassan, M. Maruf Hossain, C.K. Karmakar and Michael Kirley. Phylogeny Inference Using a Multi-objective Evolutionary Algorithm with Indirect Representation, in Xiaodong Li, Michael Kirley, Mengjie Zhang, David Green, Vic Ciesielski, Hussein Abbass, Zbigniew Michalewicz, Tim Hendtlass, Kalyanmoy Deb, Kay Chen Tan, Jürgen Branke and Yuhui Shi (editors), Simulated Evolution and Learning, 7th International Conference, SEAL 2008, pp. 41--50, Springer. Lecture Notes in Computer Science Vol. 5361, Melbourne, Australia, December 7-10, 2008.
  385. Toshiharu Hatanaka, Nobuhiko Kondo and Katsuji Uosaki. Multi-Objective Structure Selection for RBF Networks and Its Application to Nonlinear System Identification, in Yaochu Jin (Editor), Multi-Objective Machine Learning, pp. 491--505, Springer. Studies in Computational Intelligence, Volume 16, Berlin, 2006.
  386. Christian Haubelt, Sanaz Mostaghim, Frank Slomka, Jürgen Teich and Ambrish Tyagi. Hierarchical Synthesis of Embedded Systems using Evolutionary Algorithms, in Rolf Drechsler and Nicole Drechsler (editors), Evolutionary Algorithms for Embedded System Design, pp. 63--104, Kluwer Academic Publishers, Boston/Dordrecht/London, 2003.
  387. Lee Loo Hay, Chew Ek Peng, Teng suyan and Li juxin. Application of Evolutionary Algorithms for Solving Multi-Objective Simulation Optimization Problems, in Chi-Keong Goh, Yew-Soon Ong, and Kay Chen Tan (editors), Multi-Objective Memetic Algorithms, chapter 5, pp. 91--110, Springer, Studies in Computational Intelligence, Vol. 171, Berlin, Germany, 2009. ISBN 978-3-540-88050-9.
  388. Qian He, Junliang Chen, Xiangwu Meng and Yanlei Shang. A Non-dominated Sorting Bit Matrix Genetic Algorithm for P2P Relay Optimization, in Ying Tan, Yuhui Shi and Kay Chen Tan (editors), Advances in Swarm Intelligence, First International Conference, ICSI 2010, pp. 469--478, Springer. Lecture Notes in Computer Science Vol. 6145, Beijing, China, June 12-15, 2010.
  389. Guixia He, Jiaquan Gao and Luoke Hu. An Improved Immune Genetic Algorithm for Multiobjective Optimization, in Ying Tan, Yuhui Shi and Kay Chen Tan (editors), Advances in Swarm Intelligence, First International Conference, ICSI 2010, pp. 643--650, Springer. Lecture Notes in Computer Science Vol. 6145, Beijing, China, June 12-15, 2010.
  390. Mardé Helbig and Andries P. Engelbrecht. Dynamic Multi-Objective Optimization Using PSO, in Enrique Alba, Amir Nakib and Patrick Siarry (editors), Metaheuristics for Dynamic Optimization, Chapter 8, pp. 147--188, Springer, Berlin, Germany, 2013, ISBN 978-3-642-30664-8.
  391. Arturo Hernández Aguirre, Salvador Botello Rionda, Giovanni Lizárraga Lizárraga and Carlos Coello Coello. IS-PAES: Multiobjective Optimization with Efficient Constraint Handling, in Tadeusz Burczyski and Andrzej Osyczka (editors), IUTAM Symposium on Evolutionary Methods in Mechanics, pp. 111--120, Kluwer Academic Publishers, Dordrecht/Boston/London, 2004, ISBN 1-4020-2266-2.
  392. Alfredo G. Hernández-Díaz, Luis V. Santana-Quintero, Carlos A. Coello Coello, Rafael Caballero and Julián Molina. Rough Sets Theory for Multi-Objective Optimization Problems, in Carlos Cotta, Simeon Reich, Robert Schaefer and Antoni Ligeza (editors), Knowledge-Driven Computing, pp. 81--98, Springer-Verlag, Berlin, 2008, ISBN 978-3-540-77474-7.
  393. Alfredo G. Hernandez-Diaz, Carlos A. Coello Coello, Luis V. Santana-Quintero, Fatima Perez, Julian Molina and Rafael Caballero. On the use of Projected Gradients for Constrained Multiobjective Optimization Problems, in Günter Rudolph, Thomas Jansen, Simon Lucas, Carlo Poloni and Nicola Beume (editors), Parallel Problem Solving from Nature--PPSN X, pp. 712--721, Springer, Lecture Notes in Computer Science Vol. 5199, Dortmund, Germany, September 2008.
  394. Alfredo G. Hernandez-Diaz, Carlos A. Coello, Fatima Perez, Rafael Caballero and Julian Molina, Using a Gradient Based Method to Seed an EMO Algorithm, in Matthias Ehrgott, Boris Naujoks, Theodor J. Stewart and Jyrki Wallenius (editors), Multiple Criteria Decision Making for Sustainable Energy and Transportation Systems, pp. 327--337, Springer, Lecture Notes in Economics and Mathematical Systems Vol. 634, Heidelberg, Germany, 2010.
  395. Daniel Hernández, Gustavo Olague, Eddie Clemente and León Dozal. Evolutionary Purposive or Behavioral Vision for Camera Trajectory Estimation, in Cecilia Di Chio et al. (editors), Applications of Evolutionary Computation, EvoApplications 2012: EvoCOMNET, EvoCOMPLEX, EvoFIN, EvoGAMES, EvoHOT, EvoIASP, EvoNUM, EvoPAR, EvoRISK, EvoSTIM, and EvoSTOC, pp. 336--345, Springer. Lecture Notes in Computer Science Vol. 7248, Málaga, Spain, April 11-13, 2012.
  396. Jorge Sebastian Hernández-Domínguez and Gregorio Toscano-Pulido and Carlos A. Coello Coello. A Multi-objective Particle Swarm Optimizer Enhanced with a Differential Evolution Scheme, in Jin-Kao Hao, Pierrick Legrand, Pierre Collet, Nicolas Monmarché, Evelyne Lutton and Marc Schoenauer (editors), Artificial Evolution, 10th International Conference, Evolution Artificielle, EA 2011, pp. 169--180, Springer. Lecture Notes in Computer Science Vol. 7401, Angers, France, October 24-26, 2012.
  397. Carlos Hernández, Jian-Qiao Sun and Oliver Schütze. Computing the Set of Approximate Solutions of a Multi-objective Optimization Problem by Means of Cell Mapping Techniques, in Michael Emmerich, André Deutz, Oliver Schütze, Thomas Bäck, Emilia Tantar, Alexandru-Adrian Tantar, Pierre del Moral, Pierrick Legrand, Pascal Bouvry and Carlos Coello Coello (editors), EVOLVE - A Bridge between Probability, Set Oriented Numerics, and Evolutionary Computation IV, pp. 171--188, Springer, Advances in Intelligent Systems and Computing Vol. 227, Heidelberg, Germany, July 10-13, 2013, ISBN 978-3-319-01127-7.
  398. Víctor Adrián Sosa Hernández, Oliver Schütze, Günter Rudolph and Heike Trautmann. The Directed Search Method for Pareto Front Approximations with Maximum Dominated Hypervolume, in Michael Emmerich, André Deutz, Oliver Schütze, Thomas Bäck, Emilia Tantar, Alexandru-Adrian Tantar, Pierre del Moral, Pierrick Legrand, Pascal Bouvry and Carlos Coello Coello (editors), EVOLVE - A Bridge between Probability, Set Oriented Numerics, and Evolutionary Computation IV, pp. 189--205, Springer, Advances in Intelligent Systems and Computing Vol. 227, Heidelberg, Germany, July 10-13, 2013, ISBN 978-3-319-01127-7.
  399. Daniel E. Hernández, Gustavo Olague, Eddie Clemente and Le\'{o}n Dozal. Optimizing a Conspicuous Point Detector for Camera Trajectory Estimation with Brain Programming, in Oliver Schütze, Carlos A. Coello Coello, Alexandru-Adrian Tantar, Emilia Tantar, Pascal Bouvry, Pierre Del Moral and Pierrick Legrand (editors), EVOLVE - A Bridge between Probability, Set Oriented Numerics, and Evolutionary Computation III, pp. 121--140, Springer. Studies in Computational Intelligence Vol. 500, Heidelberg, Germany, 2014, ISBN 978-3-319-01459-3 .
  400. J.M. Herrero, X. Blasco, M. Martínez and C. Ramos. Nonlinear Robust Identification Using Multiobjective Evolutionary Algorithms. in José Mira and José R. Álvarez, (editors), Artificial Intelligence and Knowledge Engineering Applications: A Bioinspired Approach. First International Work-Conference on the Interplay Between Natural and Artificial Computation, IWINAC 2005, pp. 231--241, Springer, Lecture Notes in Computer Science, Vol. 3562, Las Palmas, Canary Islands, Spain, 2005.
  401. J. M. Herrero, M. Martínez, J. Sanchis and X. Blasco. Well-Distributed Pareto Front by Using the ε−MOGA Evolutionary Algorithm, in Francisco Sandoval, Alberto Prieto, Joan Cabestany and Manuel Graña (editors), Computational and Ambient Intelligence, 9th International Work-Conference on Artificial Neural Networks, IWANN 2007, pp. 292--299, Springer. Lecture Notes in Computer Science Vol. 4507, San Sebastián, Spain, June 20-22, 2007.
  402. Juan Manuel Herrero Durá, Xavier Blasco Ferragud, M. Martínez and Javier Sanchis. Multiobjective Tuning of Robust PID Controllers Using Evolutionary Algorithms, in Mario Giacobini et al. (editors), Applications of Evolutionary Computing. EvoWorkshops 2008: EvoCOMNET, EvoFIN, EvoHOT, EvoIASP, EvoMUSART, EvoNUM, EvoSTOC and EvoTransLog, pp. 515-524, Springer, Lecture Notes in Computer Science Vol. 4974, Naples, Italy, March 2008.
  403. Jan Hettenhausen, Andrew Lewis, Stephen Chen, Marcus Randall and René Fournier. Multi-Objective Particle Swarm Optimisation for Molecular Transition State Search, in Oliver Schütze, Carlos A. Coello Coello, Alexandru-Adrian Tantar, Emilia Tantar, Pascal Bouvry, Pierre Del Moral and Pierrick Legrand (editors), EVOLVE - A Bridge between Probability, Set Oriented Numerics, and Evolutionary Computation II, pp. 415--430, Springer, Advances in Intelligent Systems and Computing Vol. 175, Berlin, Germany, 2012, ISBN 978-3-642-31519-0.
  404. M. R. Hilliard, G. E. Liepins, M. Palmer and G. Rangarajen. The computer as a partner in algorithmic design: Automated discovery of parameters for a multiobjective scheduling heuristic. In R. Sharda, B. L. Golden, E. Wasil, O. Balci and W. Stewart, editors, Impacts of Recent Computer Advances on Operations Research. North-Holland Publishing Company, New York, 1989.
  405. Philip Hingston, Luigi Barone, Simon Huband and Lyndon While. Multi-level Ranking for Constrained Multi-objective Evolutionary Optimisation, in Thomas Philip Runarsson, Hans-Georg Beyer, Edmund Burke, Juan J. Merelo-Guervós, L. Darrell Whitley and Xin Yao (editors), Parallel Problem Solving from Nature - PPSN IX, 9th International Conference, pp. 563--572, Springer. Lecture Notes in Computer Science Vol. 4193, Reykjavik, Iceland, September 2006.
  406. Tomoyuki Hiroyasu, Mitsunori Miki, Jiro Kamiura, Shinya Watanabe and Hiro Hiroyasu. MOGADES: Multi-Objective Genetic Algorithm with Distributed Environment Scheme, in Ajith Abraham, Lakhmi Jain and Robert Goldberg (editors), Evolutionary Multiobjective Optimization. Theoretical Advances and Applications, pp. 201--227, Springer, USA, 2005.
  407. Tomoyuki Hiroyasu, Kenji Kobayashi, Masashi Nishioka and Mitsunori Miki. Diversity Maintenance Mechanism for Multi-Objective Genetic Algorithms Using Clustering and Network Inversion, in Günter Rudolph, Thomas Jansen, Simon Lucas, Carlo Poloni and Nicola Beume (editors), Parallel Problem Solving from Nature--PPSN X, pp. 722--732, Springer, Lecture Notes in Computer Science Vol. 5199, Dortmund, Germany, September 2008.
  408. Tomoyuki Hiroyasu, Masashi Nishioka, Mitsunori Miki and Hisatake Yokouchi. Discussion of Search Strategy for Multi-objective Genetic Algorithm with Consideration of Accuracy and Broadness of Pareto Optimal Solutions. in Xiaodong Li, Michael Kirley, Mengjie Zhang, David Green, Victor Ciesielski, Hussein A. Abbass, Zbigniew Michalewicz, Tim Hendtlass, Kalyanmoy Deb, Kay Chen Tan, Jürgen Branke and Yuhui Shi, (editors), Simulated Evolution and Learning, 7th International Conference, SEAL 2008, pp. 339--348, Springer, Lecture Notes in Computer Science, Vol. 5361, Melbourne, Australia, December 7-10, 2008.
  409. Tomoyuki Hiroyasu, Masashi Nishioka, Mitsunori Miki and Hisatake Yokouchi. Application of MOGA Search Strategy to SVM Training Data Selection, in Matthias Ehrgott, Carlos M. Fonseca, Xavier Gandibleux, Jin-Kao Hao and Marc Sevaux (editors), Evolutionary Multi-Criterion Optimization. 5th International Conference, EMO 2009, pp. 125--139, Springer. Lecture Notes in Computer Science Vol. 5467, Nantes, France, April 2009.
  410. Jeffrey Horn. Multicriterion Decision Making, in Thomas Bäck, David Fogel and Zbigniew Michalewicz (editors), Handbook of Evolutionary Computation, pp. F1.9:1 - F1.9:15, Vol. 1, IOP Publishing Ltd. and Oxford University Press, 1997.
  411. Jeffrey Horn. Optimal Nesting of Species for Exact Cover: Many against Many, in Günter Rudolph, Thomas Jansen, Simon Lucas, Carlo Poloni and Nicola Beume (editors), Parallel Problem Solving from Nature--PPSN X, pp. 438--447, Springer, Lecture Notes in Computer Science Vol. 5199, Dortmund, Germany, September 2008.
  412. Christian Horoba and Frank Neumann. Approximating Pareto-Optimal Sets Using Diversity Strategies in Evolutionary Multi-Objective Optimization. in Carlos A. Coello Coello, Clarisse Dhaenens and Laetitia Jourdan, (editors), Advances in Multi-Objective Nature Inspired Computing, chapter 2, pp. 23--44, Springer, Studies in Computational Intelligence, Vol. 272, Berlin, Germany, 2010, ISBN 978-3-642-11217-1.
  413. Liqiang Hou, Yuanli Cai, Rongzhi Zhang and Jisheng Li. Evidence Theory Based Multidisciplinary Robust Optimization for Micro Mars Entry Probe Design, in Michael Emmerich, André Deutz, Oliver Schütze, Thomas Bäck, Emilia Tantar, Alexandru-Adrian Tantar, Pierre del Moral, Pierrick Legrand, Pascal Bouvry and Carlos Coello Coello (editors), EVOLVE - A Bridge between Probability, Set Oriented Numerics, and Evolutionary Computation IV, pp. 307--322, Springer, Advances in Intelligent Systems and Computing Vol. 227, Heidelberg, Germany, July 10-13, 2013, ISBN 978-3-319-01127-7.
  414. Xiao-Bing Hu and Ezequiel Di Paolo. An Efficient Genetic Algorithm with Uniform Crossover for the Multi-Objective Airport Gate Assignment Problem, in Chi-Keong Goh, Yew-Soon Ong and Kay Chen Tan (editors), Multi-Objective Memetic Algorithms, chapter 4, pp. 71--89, Springer, Studies in Computational Intelligence, Vol. 171, Berlin, Germany, 2009. ISBN 978-3-540-88050-9 .
  415. Hong-Zhong Huang, Zhigang Tian and Ming J. Zuo. Intelligent Interactive Multiobjective Optimization of System Reliability, in Gregory Levitin (editor), Computational Intelligence in Reliability Engineering. Evolutionary Techniques in Reliability Analysis and Optimization, pp. 215--236, Springer, Heidelberg, 2007.
  416. Panfeng Huang, Gang Liu, Jianping Yuan and Yangsheng Xu. Multi-Objective Optimal Trajectory Planning of Space Robot Using Particle Swarm Optimization, in Fuchun Sun, Jianwei Zhang, Ying Tan, Jinde Cao and Wen Yu (editors), Advances in Neural Networks, 5th International Symposium on Neural Networks, ISNN 2008, pp. 171--179, Springer. Lecture Notes in Computer Science Vol. 5264, Beijing, China, September 24-28, 2008.
  417. Evan J. Hughes. Evolutionary Multi-objective Ranking with Uncertainty and Noise. In Eckart Zitzler, Kalyanmoy Deb, Lothar Thiele, Carlos A. Coello Coello and David Corne, editors, First International Conference on Evolutionary Multi-Criterion Optimization, pages 329-343. Springer-Verlag. Lecture Notes in Computer Science No. 1993, 2001.
  418. Evan J. Hughes. Multi-Objective Equivalent Random Search, in Thomas Philip Runarsson, Hans-Georg Beyer, Edmund Burke, Juan J. Merelo-Guervós, L. Darrell Whitley and Xin Yao (editors), Parallel Problem Solving from Nature - PPSN IX, 9th International Conference, pp. 463--472, Springer. Lecture Notes in Computer Science Vol. 4193, Reykjavik, Iceland, September 2006.
  419. Evan J. Hughes. Fitness Assignment Methods for Many-Objective Problems , in Joshua Knowles, David Corne and Kalyanmoy Deb (Editors), Multi-Objective Problem Solving from Nature: From Concepts to Applications, pp. 307--329, Springer, Berlin, 2008, ISBN 978-3-540-72963-1.
  420. Evan J. Hughes. Many Objective Optimisation: Direct Objective Boundary Identification, in Günter Rudolph, Thomas Jansen, Simon Lucas, Carlo Poloni and Nicola Beume (editors), Parallel Problem Solving from Nature--PPSN X, pp. 733--742, Springer, Lecture Notes in Computer Science Vol. 5199, Dortmund, Germany, September 2008.
  421. Iris Hupkens and Michael Emmerich. Logarithmic-Time Updates in SMS-EMOA and Hypervolume-Based Archiving, in Michael Emmerich, André Deutz, Oliver Schütze, Thomas Bäck, Emilia Tantar, Alexandru-Adrian Tantar, Pierre del Moral, Pierrick Legrand, Pascal Bouvry and Carlos Coello Coello (editors), EVOLVE - A Bridge between Probability, Set Oriented Numerics, and Evolutionary Computation IV, pp. 155--169, Springer, Advances in Intelligent Systems and Computing Vol. 227, Heidelberg, Germany, July 10-13, 2013, ISBN 978-3-319-01127-7.
  422. Anke K. Hutzchenreuter, Peter A. N. Bosman and Han La Poutré. Evolutionary Multiobjective Optimization for Dynamic Hospital Resource Management, in Matthias Ehrgott, Carlos M. Fonseca, Xavier Gandibleux, Jin-Kao Hao and Marc Sevaux (editors), Evolutionary Multi-Criterion Optimization. 5th International Conference, EMO 2009, pp. 320-334, Springer. Lecture Notes in Computer Science Vol. 5467, Nantes, France, April 2009.
  423. I

  424. Antony Iorio and Xiaodong Li. Rotationally Invariant Crossover Operators in Evolutionary Multi-objective Optimization, in Tzai-Der Wang, Xiaodong Li, Shu-Heng Chen, Xufa Wang, Hussein Abbass, Hitoshi Iba, Guoliang Chen and Xin Yao (editors), Simulated Evolution and Learning, 6th International Conference, SEAL 2006, pp. 310--317, Springer. Lecture Notes in Computer Science Vol. 4247, Hefei, China, October 2006.
  425. Steffen Iredi, Daniel Merkle and Martin Middendorf. Bi-Criterion Optimization with Multi Colony Ant Algorithms, In Eckart Zitzler, Kalyanmoy Deb, Lothar Thiele, Carlos A. Coello Coello and David Corne, editors, First International Conference on Evolutionary Multi-Criterion Optimization, pages 359--372. Springer-Verlag. Lecture Notes in Computer Science No. 1993, 2001.
  426. Hisao Ishibuchi and Tadashi Yoshida, Hybrid Evolutionary Multi-Objective Optimization Algorithms, in A. Abraham, J. Ruiz-del-Solar and M. Köppen (eds), Soft Computing Systems: Design, Management and Applications (Frontiers in Artificial Intelligence and Applications, Volume 87), IOS Press, ISBN 1-58603-297-6,pp. 163--172, 2002.
  427. Hisao Ishibuchi and Youhei Shibata. Single-Objective and Multi-Objective Evolutionary Flowshop Scheduling, in Carlos A. Coello Coello and Gary B. Lamont (editors), Applications of Multi-Objective Evolutionary Algorithms, pp. 529--554, World Scientific, Singapore, 2004.
  428. Hisao Ishibuchi, Tsutomu Doi and Yusuke Nojima. Incorporation of Scalarizing Fitness Functions into Evolutionary Multiobjective Optimization Algorithms, in Thomas Philip Runarsson, Hans-Georg Beyer, Edmund Burke, Juan J. Merelo-Guervós, L. Darrell Whitley and Xin Yao (editors), Parallel Problem Solving from Nature - PPSN IX, 9th International Conference, pp. 493--502, Springer. Lecture Notes in Computer Science Vol. 4193, Reykjavik, Iceland, September 2006.
  429. Hisao Ishibuchi and Yusuke Nojima. Fuzzy Ensemble Design through Multi-Objective Fuzzy Rule Selection, in Yaochu Jin (Editor), Multi-Objective Machine Learning, pp. 507--530, Springer. Studies in Computational Intelligence, Volume 16, Berlin, 2006.
  430. Hisao Ishibuchi, Isao Kuwajima and Yusuke Nojima. Multiobjective Classification Rule Mining , in Joshua Knowles, David Corne and Kalyanmoy Deb (Editors), Multi-Objective Problem Solving from Nature: From Concepts to Applications, pp. 219--240, Springer, Berlin, 2008, ISBN 978-3-540-72963-1 .
  431. Hisao Ishibuchi, Isao Kuwajima and Yusuke Nojima. Evolutionary Multi-objective Rule Selection for Classification Rule Mining, in Ashish Ghosh, Satchidananda Dehuri and Susmita Ghosh, editors, Multi-objective Evolutionary Algorithms for Knowledge Discovery from Data Bases, pp. 47--70, Springer, Berlin, 2008, ISBN 978-3-540-77466-2 .
  432. Hisao Ishibuchi, Yasuhiro Hitotsuyanagi, Noritaka Tsukamoto and Yusuke Nojima. Use of Heuristic Local Search for Single-Objective Optimization in Multiobjective Memetic Algorithms, in Günter Rudolph, Thomas Jansen, Simon Lucas, Carlo Poloni and Nicola Beume (editors), Parallel Problem Solving from Nature--PPSN X, pp. 743--752, Springer, Lecture Notes in Computer Science Vol. 5199, Dortmund, Germany, September 2008.
  433. Hisao Ishibuchi, Yusuke Nojima and Isao Kuwajima. Evolutionary Multiobjective Design of Fuzzy Rule-Based Classifiers, in John Fulcher and Lakhmi C. Jain (editors), Computational Intelligence: A Compendium, pp. 641--685, Springer, Berlin, Germany, Studies in Computational Intelligence Vol. 115, 2008, ISBN 978-3-540-78293-3.
  434. Hisao Ishibuchi, Yusuke Nojima and Isao Kuwajima. Evolutionary Multiobjective Design of Fuzzy Rule-Based Classifiers, in John Fulcher and L. C. Jain (editors), Computational Intelligence: A Compendium, pp. 642--685, Springer, Studies in Computational Intelligence (SCI), Berlin, 2008, ISBN 978-3-540-78292-6.
  435. Hisao Ishibuchi, Yuji Sakane, Noritaka Tsukamoto and Yusuke Nojima. Adaptation of Scalarizing Funtions in MOEA/D: An Adaptive Scalarizing Funtion-Based Multiobjective Evolutionary Algorithm, in Matthias Ehrgott, Carlos M. Fonseca, Xavier Gandibleux, Jin-Kao Hao and Marc Sevaux (editors), Evolutionary Multi-Criterion Optimization. 5th International Conference, EMO 2009, pp. 438--452, Springer. Lecture Notes in Computer Science Vol. 5467, Nantes, France, April 2009.
  436. Hisao Ishibuchi, Yasuhiro Hitotsuyanagi, Noritaka Tsukamoto and Yusuke Nojima. Implementation of Multiobjective Memetic Algorithms for Combinatorial Optimization Problems: A Knapsack Problem Case Study, in Chi-Keong Goh, Yew-Soon Ong, and Kay Chen Tan (editors), Multi-Objective Memetic Algorithms, chapter 2, pp. 27--49, Springer, Studies in Computational Intelligence, Vol. 171, Berlin, Germany, 2009. ISBN 978-3-540-88050-9.
  437. Hisao Ishibuchi and Yusuke Nojima. Multiobjective Genetic Fuzzy Systems, in Christine L. Mumford and Lakhmi C. Jain (editors), Computational Intelligence, Collaboration, Fusion and Emergence, pp. 131--173, Springer. Intelligent Systems Reference Library Vol. 1, Berlin, Germany, 2009, ISBN 978-3-642-01798-8.
  438. Hisao Ishibuchi, Yasuhiro Hitotsuyanagi, Yoshihiko Wakamatsu and Yusuke Nojima. How to Choose Solutions for Local Search in Multiobjective Combinatorial Memetic Algorithms. in Robert Schaefer, Carlos Cotta, Joanna Kolodziej and Günter Rudolph (editors) Parallel Problem Solving from Nature--PPSN XI, 11th International Conference, Proceedings, Part I, pp. 516--525, Springer, Lecture Notes in Computer Science Vol. 6238, Kraków, Poland, September, 2010.
  439. Hisao Ishibuchi, Yasuhiro Hitotsuyanagi, Noritaka Tsukamoto and Yusuke Nojima. Many-Objective Test Problems to Visually Examine the Behavior of Multiobjective Evolution in a Decision Space. in Robert Schaefer, Carlos Cotta, Joanna Kolodziej, and Günter Rudolph (editors), Parallel Problem Solving from Nature--PPSN XI, 11th International Conference, Proceedings, Part II, pp. 91--100, Springer, Lecture Notes in Computer Science Vol. 6239, Kraków, Poland, September, 2010.
  440. Hisao Ishibuchi, Masakazu Yamane and Yusuke Nojima. Difficulty in Evolutionary Multiobjective Optimization of Discrete Objective Functions with Different Granularities, in Robin C. Purshouse, Peter J. Fleming, Carlos M. Fonseca, Salvatore Greco and Jane Shaw (editors), Evolutionary Multi-Criterion Optimization, 7th International Conference, EMO 2013, pp. 230--245, Springer. Lecture Notes in Computer Science Vol. 7811, Sheffield, UK, March 19-22, 2013.
  441. Hisao Ishibuchi, Naoya Akedo and Yusuke Nojima. Relation between Neighborhood Size and MOEA/D Performance on Many-Objective Problems, in Robin C. Purshouse, Peter J. Fleming, Carlos M. Fonseca, Salvatore Greco and Jane Shaw (editors), Evolutionary Multi-Criterion Optimization, 7th International Conference, EMO 2013, pp. 459--474, Springer. Lecture Notes in Computer Science Vol. 7811, Sheffield, UK, March 19-22, 2013.
  442. Celso Y. Ishida, Aurora Pozo, Elizabeth Goldbarg and Marco Goldbarg. Multiobjective Optimization and Rule Learning: Subselection Algorithm or Meta-heuristic Algorithm?, in Nadia Nedjah, Luiza de Macedo Mourelle and Janusz Kacprzyk (editors), Innovative Applications in Data Mining, pp. 47--70, Springer. Studies in Computational Intelligence Vol. 169, Berlin, Germany, 2009, ISBN 978-3-540-88044-8.
  443. Fuyuko Ito, Tomoyuki Hiroyasu, Mitsunori Miki and Hisatake Yokouchi. Discussion of Offspring Generation Method for Interactive Genetic Algorithms with Consideration of Multimodal Preference, in Xiaodong Li, Michael Kirley, Mengjie Zhang, David G. Green, Victor Ciesielski, Hussein A. Abbass, Zbigniew Michalewicz, Tim Hendtlass, Kalyanmoy Deb, Kay Chen Tan, Jürgen Branke and Yuhui Shi (editors), Simulated Evolution and Learning, 7th International Conference, SEAL 2008, pp. 349--359, Springer. Lecture Notes in Computer Science Vol. 5361, Melbourne, Australia, December 7-10, 2008.
  444. J

  445. Himanshu Jain and Kalyanmoy Deb. An Improved Adaptive Approach for Elitist Nondominated Sorting Genetic Algorithm for Many-Objective Optimization, in Robin C. Purshouse, Peter J. Fleming, Carlos M. Fonseca, Salvatore Greco and Jane Shaw (editors), Evolutionary Multi-Criterion Optimization, 7th International Conference, EMO 2013, pp. 307--321, Springer. Lecture Notes in Computer Science Vol. 7811, Sheffield, UK, March 19-22, 2013.
  446. Wilfried Jakob, Alexander Quinte, Karl-Uwe Stucky and Wolfgang Süβ. Fast Multi-objective Scheduling of Jobs to Constrained Resources Using a Hybrid Evolutionary Algorithm, in Günter Rudolph, Thomas Jansen, Simon Lucas, Carlo Poloni and Nicola Beume (editors), Parallel Problem Solving from Nature--PPSN X, pp. 1031--1040, Springer, Lecture Notes in Computer Science Vol. 5199, Dortmund, Germany, September 2008.
  447. Gábor Janiga. A Few Illustrative Examples of CFD-based Optimization: Heat Exhanger, Laminar Burner and Turbulence Modeling. In Dominique Thévenin and Gábor Janiga, (editors), Optimization and Computational Fluid Dynamics, chapter 2, pp. 17--59. Springer-Verlag, Berlin, Heidelberg, 2008.
  448. Pawel Jarosz and Tadeusz Burczyski. Coupling of Immune Algorithms and Game Theory in Multiobjective Optimization, in Leszek Rutkowski, Rafal Scherer, Ryszard Tadeusiewicz, Lotfi A. Zadeh and Jacek M. Zurada (editors), Artifical Intelligence and Soft Computing, 10th International Conference, ICAISC 2010, pp. 500--507, Springer. Lecture Notes in Computer Science Vol. 6114, Zakopane, Poland, June 13-17, 2010.
  449. Andrzej Jaszkiewicz, Maciej Hapke and Pawel Kominek. Performance of Multiple Objective Evolutionary Algorithms on a Distribution System Design Problem--Computational Experiment. In Eckart Zitzler, Kalyanmoy Deb, Lothar Thiele, Carlos A. Coello Coello and David Corne, editors, First International Conference on Evolutionary Multi-Criterion Optimization, pages 241-255. Springer-Verlag. Lecture Notes in Computer Science No. 1993, 2001.
  450. Andrzej Jaszkiewicz. On the Computational Effectiveness of Multiple Objective Metaheuristics, in T. Traskalik and J. Michnik (editors), Multiple Objective and Goal Programming. Recent Developments, pp. 86--100, Physica-Verlag, Heidelberg, 2002.
  451. Andrzej Jaszkiewicz and Jürgen Branke. Interactive Multiobjective Evolutionary Algorithms, in Jürgen Branke, Kalyanmoy Deb, Kaisa Miettinen and Roman Slowinski (editors), Multiobjective Optimization. Interactive and Evolutionary Approaches, pp. 179--193, Springer. Lecture Notes in Computer Science Vol. 5252, Berlin, Germany, 2008.
  452. Sri Krishna Kumar, S.G. Ponnambalam and M.K. Tiwari. A Multi-Objective Resource Assignment Problem in Product Driven Supply Chain Using Quantum Inspired Particle Swarm Algorithm, in Bijaya Ketan Panigrahi, Yuhui Shi and Meng-Hiot Lim (editors), Handbook of Swarm Intelligence. Concepts, Principles and Applications, pp. 269--292, Springer-Verlag, Belin, Germany, 2011. ISBN 978-3-642-17389-9.
  453. Vikas Kumar, Nishikant Mishra, Felix T.S. Chan, Niraj Kumar and Anoop Verma. A Multiple Ant Colony Optimisation Approach for a Multi-objective Manufacturing Rescheduling Problem, in Lihui Wang, Amos H.C. Ng and Kalyanmoy Deb (editors), Multi-objective Evolutionary Optimisation for Product Design and Manufacturing, Chapter 12, pp. 343--361, Springer, London, UK, 2011, ISBN 978-0-85729-617-7.
  454. A. Charan Kumari, K. Srinivas and M. P. Gupta. Software requirements Optimization Using Multi-Objective Quantum-Inspired Hybrid Differential Evolution, in Oliver Schütze, Carlos A. Coello Coello, Alexandru-Adrian Tantar, Emilia Tantar, Pascal Bouvry, Pierre Del Moral and Pierrick Legrand (editors), EVOLVE - A Bridge between Probability, Set Oriented Numerics, and Evolutionary Computation II, pp. 107--120, Springer, Advances in Intelligent Systems and Computing Vol. 175, Berlin, Germany, 2012, ISBN 978-3-642-31519-0 .
  455. Siwei Jiang and Zhihua Cai. A Novel Hybrid Particle Swarm Optimization for Multi-Objective Problems, in Hepu Deng, Lanzhou Wang, Fu Lee Wang and Jingsheng Lei (editors), Artificial Intelligence and Computational Intelligence, International Conference, AICI 2009, pp. 28--37, Springer, Lecture Notes in Artificial Intelligence Vol. 5855, Shanghai, China, November 7-8, 2009.
  456. He Jiang, Shuyan Zhang and Zhilei Ren. Solving Multiobjective Optimization Problem by Constraint Optimization. in Robert Schaefer, Carlos Cotta, Joanna Kolodziej and Günter Rudolph (editors) Parallel Problem Solving from Nature--PPSN XI, 11th International Conference, Proceedings, Part I, pp. 637--646, Springer, Lecture Notes in Computer Science Vol. 6238, Kraków, Poland, September 2010.
  457. Siwei Jiang and Zhihua Cai. A New Differential Evolution for Multiobjective Optimization by Uniform Design and Minimum Reduce Hypervolume, in F. Peper, H. Umeo, N. Matsui and T. Isokawa (editors), Natural Computing, 4th International Workshop on Natural Computing, pp. 199--208, Springer, Himeji, Japan, 2010, ISBN 978-4-431-53867-7.
  458. Licheng Jiao, Maoguo Gong, Winping Ma and Ranghua Shang. Multi-Objective Optimization Using Artificial Immune Systems, in Lam Thu Bui and Sameer Alam (editors), Multi-Objective Optimization in Computational Intelligence: Theory and Practice, pp. 106--147, Information Science Reference, Hershey, PA, USA, 2008, ISBN 978-1-59904-498-9.
  459. Fernando Jiménez, Antonio F. Gómez-Skarmeta, Hans Roubos and Robert Babuska. Accurate, transparent and compact fuzzy models for function approximation and dynamic modeling through multi-objective evolutionary optimization. In Eckart Zitzler, Kalyanmoy Deb, Lothar Thiele, Carlos A. Coello Coello and David Corne, editors, First International Conference on Evolutionary Multi-Criterion Optimization, pages 653-667. Springer-Verlag. Lecture Notes in Computer Science No. 1993, 2001.
  460. F. Jiménez, G. Sánchez, J. M. Cadenas, A. F. Gómez-Skarmeta and J. L. Verdegay. Nonlinear Optimization with Fuzzy Constraints by Multi-Objective Evolutionary Algorithms, in Bernd Reusch (editor), Computational Intelligence, Theory and Applications, pp. 713-722, Springer. Advances in Soft Computing. Vol. 33, Dortmund, Germany, 2005.
  461. F. Jiménez, G. Sánchez, J.M. Cadenas, A.F. Gómez-Skarmeta and J.L. Verdegay. Solving a Fuzzy Nonlinear Optimization problem by an "ad hoc" Multi-objective Evolutionary Algorithm, in Cengiz Kahraman (editor), Fuzzy Applications in Industrial Engineering, pp. 521--533, Springer, Studies in Fuzziness and Soft Computing Vol. 201, 2006.
  462. Fernando Jiménez, Gracia Sánchez, José F. Sánchez and José M. Alcaraz. Fuzzy Classification with Multi-objective Evolutionary Algorithms, in Emilio Corchado, Ajith Abraham, and Witold Pedrycz (editors), Hybrid Artificial Intelligence Systems. Third International Workshop (HAIS'2008), pp. 730-738, Springer, Lecture Notes in Computer Science, Vol. 5271, Burgos, Spain, September 24-26 2008. ISBN 978-3-540-87655-7.
  463. Yaochu Jin, Tatsuya Okabe and Bernhard Sendhoff. Adapting Weighted Aggregation for Multiobjective Evolution Strategies. In Eckart Zitzler, Kalyanmoy Deb, Lothar Thiele, Carlos A. Coello Coello and David Corne, editors, First International Conference on Evolutionary Multi-Criterion Optimization, pages 96-110. Springer-Verlag. Lecture Notes in Computer Science No. 1993, 2001.
  464. Yaochu Jin, Tatsuya Okabe and Bernhard Sendhoff. Evolutionary Multi-Objective Optimization Approach to Constructing Neural Network Ensembles for Regression, in Carlos A. Coello Coello and Gary B. Lamont (editors), Applications of Multi-Objective Evolutionary Algorithms, pp. 653--673, World Scientific, Singapore, 2004.
  465. Yaochu Jin, Bernhard Sendhoff and Edgar Körner. Simultaneous Generation of Accurate and Interpretable Neural Network Classifiers, in Yaochu Jin (Editor), Multi-Objective Machine Learning, pp. 291--312, Springer. Studies in Computational Intelligence, Volume 16, Berlin, 2006.
  466. Yaochu Jin and Ruojing Wen and Bernhard Sendhoff. Evolutionary Multi-objective Optimization of Spiking Neural Networks, in Joaquim Marques de Sá, Luís A. Alexandre, Wlodzislaw Duch and Danilo Mandic (editors), Artificial Neural Networks,17th International Conference, pp. 370--379, Springer. Lecture Notes in Computer Science Vol. 4668, Porto, Portugal, September 9-13 2007.
  467. Yaochu Jin, Aimin Zhou, Qingfu Zhang, Bernhard Sendhoff and Edward Tsang. Modeling Regularity to Improve Scalability of Model-Based Multiobjective Optimization, in Joshua Knowles, David Corne and Kalyanmoy Deb (Editors), Multi-Objective Problem Solving from Nature: From Concepts to Applications, pp. 331--355, Springer, Berlin, 2008, ISBN 978-3-540-72963-1.
  468. Yaochu Jin, Bernhard Sendhoff and Edgar Körner. Rule Extraction from Compact Pareto-optimal Neural Networks, in Ashish Ghosh, Satchidananda Dehuri and Susmita Ghosh, editors, Multi-objective Evolutionary Algorithms for Knowledge Discovery from Data Bases, pp. 71--90, Springer, Berlin, 2008, ISBN 978-3-540-77466-2.
  469. Daniel Johannsen. Evolutionary Computation in Combinatorial Optimization, in Anne Auger and Benjamin Doerr (editors), Theory of Randomized Search Heuristics. Foundations and Recent Developments, pp. 53--99, Chapter 3, World Scientific, Singapore, 2011, ISBN 978-981-4282-66-6.
  470. Shaine Joseph, Hyung W. Kang and Uday K. Chakraborty. Optical Design with Epsilon-Dominated Multi-objective Evolutionary Algorithm, in Bartlomiej Beliczynski, Andrzej Dzielinski, Marcin Iwanowski and Bernardete Ribeiro (editors), Adaptive and Natural Computing Algorithms, 8th International Conference, ICANNGA'2007, pp. 77--84, Springer, Lecture Notes in Computer Science, Vol. 4431, Warsaw, Poland, April 11-14 2007, ISBN 978-3-540-71589-4.
  471. Ramprasad Joshi and Bharat Deshpande. Scalability of Population-Based Search Heuristics for Many-Objective Optimization, in Anna I. Esparcia-Alcázar et al. (editors), Applications of Evolutionary Computation, 16th European Conference, EvoApplications 2013, pp. 479--488, Springer. Lecture Notes in Computer Science Vol. 7835, Vienna, Austria, April 3-5, 2013.
  472. Nicolas Jozefowiez, Frédéric Semet and El-Ghazali Talbi. A Multi-Objective Evolutionary Algorithm for the Covering Tour Problem, in Carlos A. Coello Coello and Gary B. Lamont (editors), Applications of Multi-Objective Evolutionary Algorithms, pp. 247--267, World Scientific, Singapore, 2004.
  473. Nicolas Jozefowiez, Frédéric Semet and El-Ghazali Talbi. Enhancements of NSGA II and Its Application to the Vehicle Routing Problem with Route Balancing, in El-Ghazali Talbi, Pierre Liardet, Pierre Collet, Evelyne Lutton and Marc Schoenauer (editors), Artificial Evolution, 7th International Conference, Evolution Artificielle, EA 2005, pp. 131--142, Springer. Lecture Notes in Computer Science Vol. 3871, Lille, France, October 2005.
  474. Leonard Judt, Olaf Mersmann and Boris Naujoks. Do Hypervolume Regressions Hinder EMOA Performance? Surprise and Relief, in Robin C. Purshouse, Peter J. Fleming, Carlos M. Fonseca, Salvatore Greco and Jane Shaw (editors), Evolutionary Multi-Criterion Optimization, 7th International Conference, EMO 2013, pp. 96--110, Springer. Lecture Notes in Computer Science Vol. 7811, Sheffield, UK, March 19-22, 2013.
  475. Qin Jun, Jiangqing Wang and Bo-jin Zheng. A Hybrid Multi-objective Algorithm for Dynamic Vehicle Routing Problems, in Marian Bubak, G. Dick van Albada, Jack Dongarra, and Peter M. A. Sloot (editors), 8th International Conference on Computational Science (ICCS'2008), pp. 674--681, Springer, Lecture Notes in Computer Science, Vol. 5103, Kraków, Poland, 2008. ISBN 978-3-540-69388-8.
  476. Peter Dueholm Justesen and Rasmus K. Ursem. Multiobjective Distinct Candidates Optimization (MODCO): A Cluster-Forming Differential Evolution Algorithm, in Matthias Ehrgott, Carlos M. Fonseca, Xavier Gandibleux, Jin-Kao Hao and Marc Sevaux (editors), Evolutionary Multi-Criterion Optimization. 5th International Conference, EMO 2009, pp. 525--539, Springer. Lecture Notes in Computer Science Vol. 5467, Nantes, France, April 2009.
  477. K

  478. Sofiene Kachroudi. Substitute Domination Relation for High Objective Number Optimization, in Bijaya Ketan Panigrahi, Swagatam Das, Ponnuthurai Nagaratnam Suganthan and Subhransu Sekhar Dash (editors), Swarm, Evolutionary, and Memetic Computing, First International Conference on Swarm, Evolutionary and Memetic Computing, SEMCCO 2010, pp. 314--321, Springer-Verlag. Lecture Notes in Computer Science Vol. 6466, Chennai, India, December 16-18, 2010.
  479. Ahmed Kafafy, Ahmed Bounekkar and Stéphane Bonnevay. HEMH2: An Improved Hybrid Evolutionary Metaheuristics for 0/1 Multiobjective Knapsack Problems, in Lam Thu Bui, Yew Soon Ong, Nguyen Xuan Hoai, Hisao Ishibuchi and Ponnuthurai Nagaratnam Suganthan (editors), Simulated Evolution and Learning, 9th International Conference, SEAL 2012, pp. 104--116, Springer. Lecture Notes in Computer Science Vol. 7673, Hanoi, Vietnam, December 16-19, 2012.
  480. Ignacy Kaliszewski and Janusz Miroforidis. Multiple Criteria Decision Making: Efficient Outcome Assessments with Evolutionary Optimization. in Yong Shi, Shouyang Wang, Yi Peng, Jianping Li and Yong Zeng, (editors), Cutting-Edge Research Topics on Multiple Criteria Decision Making (MCDM'2009), pp. 25--28, Springer, Communications in Computer and Information Science, Vol. 35, Heidelberg, Germany, 2009.
  481. Raffi R. Kamalian, Ying Zhang, Hideyuki Takagi and Alice M. Agogino. Evolutionary Synthesis of Micromachines Using Supervisory Multiobjective Interactive Evolutionary Computation, in Daniel S. Yeung, Zhi-Qiang Liu, Xizhao Wang and Hong Yan (editors), Advances in Machine Learning and Cybernetics, 4th International Conference, ICMLC 2005, pp. 428-437, Springer, Lecture Notes in Computer Science Vol. 3930, Guangzhou, China, August 18-21 2006.
  482. Kosuke Kato, Cahit Perkgoz and Masatoshi Sakawa. An Interactive Fuzzy Satisficing Method for Multiobjective Integer Programming Problems through Genetic Algorithms, in Yaochu Jin (editor), Knowledge Incorporation in Evolutionary Computation, Springer, pp. 503--523, Berlin Heidelberg, 2005, ISBN 3-540-22902-7 .
  483. Paul Kaufmann and Marco Platzner. Toward Self-adaptive Embedded Systems: Multi-objective Hardware Evolution, in Paul Lukowicz, Lothar Thiele and Gerhard Tröster (editors), Architecture of Computing Systems - ARCS 2007, 20th International Conference, pp. 199--208, Springer. Lecture Notes in Computer Science Vol. 7673, Zurich, Switzerland, March 12-15, 2007.
  484. Carlos Kavka, Luka Onesti, Enrico Rigoni, Alessandro Turco, Sara Bocchio, Fabrizio Castro, Gianluca Palermo, Cristina Silvano, Vittorio Zaccaria, Giovanni Mariani, Fan Dongrui, Zhang Hao and Tang Shibin. Design Space Exploration of Parallel Architectures, in Cristina Silvano, William Fornaciari and Eugenio Villar (editors), Multi-objective Design Space Exploration of Multiprocessor SoC Architectures, The MULTICUBE Approach, Chapter 8, pp. 171--188, Springer, New York, USA, 2011, ISBN 978-1-4419-8836-2.
  485. Hilmi G. Kayacik, A. Nur Zincir-Heywood, Malcolm I. Heywood and Stefan Burschka. Testing Detector Parameterization Using Evolutionary Exploit Generation. in Mario Giacobini, Anthony Brabazon, Stefano Cagnoni, Gianni A. Di Caro, Anikó Ekárt, Anna Isabel Esparcia-Alcázar, Muddassar Farooq, Andreas Fink and Penousal Machado, (editors), Applications of Evolutionary Computing (EvoWorkshops 2009), pp. 105--110, Springer, Lecture Notes in Computer Science, Vol. 5484, Heidelberg, Germany, 2009.
  486. S. Khajehpour and D.E. Grierson. Study of Safety of High-Rise Buildings using Evolutionary Search, in Tadeusz Burczyński and Andrzej Osyczka (editors), IUTAM Symposium on Evolutionary Methods in Mechanics, pp. 153--161, Kluwer Academic Publishers, Dordrecht/Boston/London, 2004, ISBN 1-4020-2266-2.
  487. Osama Khalifa, David Wolfe Corne, Mike Chantler and Fraser Halley. Multi-objective Topic Modeling, in Robin C. Purshouse, Peter J. Fleming, Carlos M. Fonseca, Salvatore Greco and Jane Shaw (editors), Evolutionary Multi-Criterion Optimization, 7th International Conference, EMO 2013, pp. 51--65, Springer. Lecture Notes in Computer Science Vol. 7811, Sheffield, UK, March 19-22, 2013.
  488. E.F. Khor, K.C. Tan and T.H. Lee. Tabu-Based Exploratory Evolutionary Algorithm for Effective Multi-objective Optimization. In Eckart Zitzler, Kalyanmoy Deb, Lothar Thiele, Carlos A. Coello Coello and David Corne, editors, First International Conference on Evolutionary Multi-Criterion Optimization, pages 344-358. Springer-Verlag. Lecture Notes in Computer Science No. 1993, 2001.
  489. E.F. Khor, K.C. Tan and Y.J. Yang. An Evolutionary Algorithm with Tabu Restriction and Heuristic Reasoning for Multiobjective Optimization, in Yaochu Jin (editor), Knowledge Incorporation in Evolutionary Computation, Springer, pp. 255--277, Berlin Heidelberg, 2005, ISBN 3-540-22902-7 .
  490. M.R. Khouadjia, M. Schoenauer, V. Vidal, J. Dréo and P. Savéant. Multi-objective AI Planning: Evaluating DaE YAHSP on a Tunable Benchmark, in Robin C. Purshouse, Peter J. Fleming, Carlos M. Fonseca, Salvatore Greco and Jane Shaw (editors), Evolutionary Multi-Criterion Optimization, 7th International Conference, EMO 2013, pp. 36--50, Springer. Lecture Notes in Computer Science Vol. 7811, Sheffield, UK, March 19-22, 2013.
  491. Mostepha R. Khouadjia, Marc Schoenauer, Vincent Vidal, Johann Dréo and Pierre Savéant. Multi-objective AI Planning: Comparing Aggregation and Pareto Approaches, in Martin Middendorf and Christian Blum (editors), Evolutionary Computation in Combinatorial Optimization, 13th European Conference, pp. 202--213, Springer. Lecture Notes in Computer Science Vol. 7832, Vienna, Austria, April 3-5, 2013.
  492. A. A. Khwaja, M. O. Rahman and M.G. Wagner. Inverse Kinematics of Arbitrary Robotic Manipulators using Genetic Algorithms. In J. Lenarcic and M. L. Justy, editors, Advances in Robot Kinematics: Analysis and Control, pages 375-382. Kluwer Academic Publishers, 1998.
  493. DaeEun Kim. Minimizing Structural Risk on Decision Tree Classification, in Yaochu Jin (Editor), Multi-Objective Machine Learning, pp. 241--260, Springer. Studies in Computational Intelligence, Volume 16, Berlin, 2006.
  494. Timoleon Kipouros. Stochastic Optimisation in Computational Engineering Design, in Oliver Schütze, Carlos A. Coello Coello, Alexandru-Adrian Tantar, Emilia Tantar, Pascal Bouvry, Pierre Del Moral and Pierrick Legrand (editors), EVOLVE - A Bridge between Probability, Set Oriented Numerics, and Evolutionary Computation II, pp. 475--490, Springer, Advances in Intelligent Systems and Computing Vol. 175, Berlin, Germany, 2012, ISBN 978-3-642-31519-0.
  495. Oliver Kirkland, Victor J. Rayward-Smith and Beatriz de la Iglesia. A Novel Multi-Objective Genetic Algorithm for Clustering, in Hujun Yin and, Wenjia Wang and Victor Rayward-Smith (editors), Intelligent Data Engineering and Automated Learning-IDEAL 2011, 12th International Conference, Norwich, UK, pp. 317--326, Springer. Lecture Notes in Computer Science Vol. 6936, Norwich, UK, September 7-9, 2011.
  496. Mark P. Kleeman and Gary B. Lamont. Scheduling of Flow-Shop, Job-Shop and Combined Scheduling Problems using MOEAs with Fixed and Variable Length Chromosomes, in Keshav P. Dahal, Kay Chen Tan and Peter I Cowling (editors), Evolutionary Scheduling, pp. 49--99, Springer, Studies in Computational Intelligence (SCI), Berlin, 2007, ISBN 3-540-48582-1 .
  497. Mark P. Kleeman and Gary B. Lamont. Evolutionary Multi-Objective Optimization for Assignment Problems, in Lam Thu Bui and Sameer Alam (editors), Multi-Objective Optimization in Computational Intelligence: Theory and Practice, pp. 364--387, Information Science Reference, Hershey, PA, USA, 2008, ISBN 978-1-59904-498-9 .
  498. Mark P. Kleeman and Gary B. Lamont. Evolutionary Multi-Objective Optimization in Military Applications, in Lam Thu Bui and Sameer Alam (editors), Multi-Objective Optimization in Computational Intelligence: Theory and Practice, pp. 388--429, Information Science Reference, Hershey, PA, USA, 2008, ISBN 978-1-59904-498-9 .
  499. Jan-Willem Klinkenberg, Michael T. M. Emmerich, André H.Deutz, Ofer M. Shir and Thomas Bäck. A Reduced-Cost SMS-EMOA Using Kriging, Self-Adaptation, and Parallelization. in Matthias Ehrgott, Boris Naujoks, Theodor J. Stewart and Jyrki Wallenius, (editors), Multiple Criteria Decision Making for Sustainable Energy and Transportation Systems, pp. 301--311, Springer, Lecture Notes in Economics and Mathematical Systems Vol. 634, Heidelberg, Germany, 2010.
  500. Joshua D. Knowles, Richard A. Watson and David W. Corne. Reducing Local Optima in Single-Objective Problems by Multi-objectivization. In Eckart Zitzler, Kalyanmoy Deb, Lothar Thiele, Carlos A. Coello Coello and David Corne, editors, First International Conference on Evolutionary Multi-Criterion Optimization, pages 268-282. Springer-Verlag. Lecture Notes in Computer Science No. 1993, 2001.
  501. Joshua Knowles and David Corne. Memetic Algorithms for Multiobjective Optimization: Issues, Methods and Prospects, in William E. Hart, N. Krasnogor and J.E. Smith (editors), Recent Advances in Memetic Algorithms, pp. 313--352, Springer. Studies in Fuzziness and Soft Computing, Vol. 166, 2005.
  502. Joshua Knowles, David Corne and Kalyanmoy Deb. Introduction: Problem Solving, EC and EMO, in Joshua Knowles, David Corne and Kalyanmoy Deb (Editors), Multi-Objective Problem Solving from Nature: From Concepts to Applications, pp. 1--28, Springer, Berlin, 2008, ISBN 978-3-540-72963-1 .
  503. Joshua Knowles and Hirotaka Nakayama. Meta-Modeling in Multiobjective Optimization, in Jürgen Branke, Kalyanmoy Deb, Kaisa Miettinen and Roman Slowinski (editors), Multiobjective Optimization. Interactive and Evolutionary Approaches, pp. 245--284, Springer. Lecture Notes in Computer Science Vol. 5252, Berlin, Germany, 2008.
  504. Joshua Knowles, David Corne and Alan Reynolds. Noisy Multiobjective Optimization on a Budget of 250 Evaluations, in Matthias Ehrgott, Carlos M. Fonseca, Xavier Gandibleux, Jin-Kao Hao and Marc Sevaux (editors), Evolutionary Multi-Criterion Optimization. 5th International Conference, EMO 2009, pp. 36--50, Springer. Lecture Notes in Computer Science Vol. 5467, Nantes, France, April 2009.
  505. Emin Erkan Korkmaz. A Two-Level Clustering Method Using Linear Linkage Encoding, in Thomas Philip Runarsson, Hans-Georg Beyer, Edmund Burke, Juan J. Merelo-Guervós, L. Darrell Whitley and Xin Yao (editors), Parallel Problem Solving from Nature - PPSN IX, 9th International Conference, pp. 681--690, Springer. Lecture Notes in Computer Science Vol. 4193, Reykjavik, Iceland, September 2006.
  506. Mark Kotanchek, Guido Smits and Ekaterina Vladislavleva. Pursuing the Pareto Paradigm: Tournaments, Algorithm Variations and Ordinal Optimization, in Rick L. Riolo, Terence Soule and Bill Worzel (editors), Genetic Programming Theory and Practice IV, pp. 167--185, Springer, Genetic and Evolutionary Computation Vol. 5, Ann Arbor, May 2007.
  507. Mark Kotanchek, Guido Smits and Ekaterina Vladislavleva. Trustable Symbolic Regression Models: Using ensembles, interval arithmetic and Pareto fronts to develop robust and trust-aware models, in Rick L. Riolo, Terence Soule and Bill Worzel (editors), Genetic Programming Theory and Practice V, pp. 201--220, Springer, Genetic and Evolutionary Computation Vol. 5, Ann Arbor, May 2007.
  508. John R. Koza, Lee W. Jones, Martin A. Keane, Matthew J. Streeter and Sameer H. Al-Sakran. Toward Automated Design of Industrial-Strength Analog Circuits by Means of Genetic Programming, in Una-May O'Reilly, Tina Yu, Rick Riolo and Bill Worzel (editors), Genetic Programming Theory and Practice II, pp. 120--142, Springer, New York, USA, 2005.
  509. M. Krause and V. Nissen. On Using Penalty Functions and Multicriteria Optimisation Techniques in Facility Layout. In J. Biethahn and V. Nissen, editors, Evolutionary Algorithms in Management Applications. Springer-Verlag, Berlin, 1995.
  510. Stanislaw Krenich. Multicriteria Design Optimization of Robot Gripper Mechanisms, in Tadeusz Burczyski and Andrzej Osyczka (editors), IUTAM Symposium on Evolutionary Methods in Mechanics, pp. 207--218, Kluwer Academic Publishers, Dordrecht/Boston/London, 2004, ISBN 1-4020-2266-2.
  511. Stanislaw Krenich and Andrzej Osyczka. Optimal Design of Multiple Clutch Brakes Using a Multistage Evolutionary Method, in Tadeusz Burczyski and Andrzej Osyczka (editors), IUTAM Symposium on Evolutionary Methods in Mechanics, pp. 219--228, Kluwer Academic Publishers, Dordrecht/Boston/London, 2004, ISBN 1-4020-2266-2.
  512. K.N. Krishnanand and D. Ghose. Glowworm Swarm Optimization for Multimodal Search Spaces, in Bijaya Ketan Panigrahi, Yuhui Shi and Meng-Hiot Lim (editors), Handbook of Swarm Intelligence. Concepts, Principles and Applications, pp. 451--467, Springer-Verlag, Belin, Germany, 2011. ISBN 978-3-642-17389-9 .
  513. Vojtech Krmicek and Michèle Sebag. Functional Brain Imaging with Multi-objective Multi-modal Evolutionary Optimization, in Thomas Philip Runarsson, Hans-Georg Beyer, Edmund Burke, Juan J. Merelo-Guervós, L. Darrell Whitley and Xin Yao (editors), Parallel Problem Solving from Nature - PPSN IX, 9th International Conference, pp. 382--391, Springer. Lecture Notes in Computer Science Vol. 4193, Reykjavik, Iceland, September 2006.
  514. Johannes W. Kruisselbrink, Michael T.M. Emmerich, Thomas Bäck andreas Bender, Ad P. IJzerman and Eelke van der Horst. Combining Aggregation with Pareto Optimization: A Case Study in Evolutionary Molecular Design, in Matthias Ehrgott, Carlos M. Fonseca, Xavier Gandibleux, Jin-Kao Hao and Marc Sevaux (editors), Evolutionary Multi-Criterion Optimization. 5th International Conference, EMO 2009, pp. 453--467, Springer. Lecture Notes in Computer Science Vol. 5467, Nantes, France, April 2009.
  515. K.K. Kshetrapalapuram and M. Kirley. Mining classification rules using evolutionary multi-objective algorithms, Knowledge-Based Intelligent Information and Engineering Systems, Part 3, Proceedings,Springer, pp. 959--965, Lecture Notes in Artificial Intelligence Vol. 3683, 2005.
  516. Naoyuki Kubota. Multi-Objective Design of Neuro-Fuzzy Controllers for Robot Behavior Coordination, in Yaochu Jin (Editor), Multi-Objective Machine Learning, pp. 557--584, Springer. Studies in Computational Intelligence, Volume 16, Berlin, 2006.
  517. Rajesh Kudikala, Andrew R. Mills, Peter J. Fleming, Graham F. Tanner and Jonathan E. Holt. Real World System Architecture Design Using Multi-criteria Optimization: A Case Study, in Michael Emmerich, André Deutz, Oliver Schütze, Thomas Bäck, Emilia Tantar, Alexandru-Adrian Tantar, Pierre del Moral, Pierrick Legrand, Pascal Bouvry and Carlos Coello Coello (editors), EVOLVE - A Bridge between Probability, Set Oriented Numerics, and Evolutionary Computation IV, pp. 245--260, Springer, Advances in Intelligent Systems and Computing Vol. 227, Heidelberg, Germany, July 10-13, 2013, ISBN 978-3-319-01127-7.
  518. Saku Kukkonen and Kalyanmoy Deb. A Fast and Effective Method for Pruning of Non-dominated Solutions in Many-Objective Problems, in Thomas Philip Runarsson, Hans-Georg Beyer, Edmund Burke, Juan J. Merelo-Guervós, L. Darrell Whitley and Xin Yao (editors), Parallel Problem Solving from Nature - PPSN IX, 9th International Conference, pp. 553--562, Springer. Lecture Notes in Computer Science Vol. 4193, Reykjavik, Iceland, September 2006.
  519. Saku Kukkonen and Jouni Lampinen. Generalized Differential Evolution for Constrained Multi-Objective Optimization, in Lam Thu Bui and Sameer Alam (editors), Multi-Objective Optimization in Computational Intelligence: Theory and Practice, pp. 43--75, Information Science Reference, Hershey, PA, USA, 2008, ISBN 978-1-59904-498-9.
  520. Sadan Kulturel-Konak, Abdullah Konak and David W. Coit. Multiobjective Metaheuristic Approaches to Reliability Optimization, in Gregory Levitin (editor), Computational Intelligence in Reliability Engineering. Evolutionary Techniques in Reliability Analysis and Optimization, pp. 37-62, Springer, Heidelberg, 2007.
  521. Pasan Kulvanit, Theera Piroonratana, Nachol Chaiyaratana and Djitt Laowattana. Evolutionary Multi-objective Optimisation by Diversity Control. in Dima Grigoriev, John Harrison, and Edward A. Hirsch, (editors), Computer Science -- Theory and Applications. First International Computer Science Symposium in Russia (CSR 2006), pp. 447--456, Springer, Lecture Notes in Computer Science, Vol. 3967, St. Petersburg, Russia, 2006.
  522. Rajeev Kumar. On Machine Learning with Multiobjective Genetic Optimization, in Carlos A. Coello Coello and Gary B. Lamont (editors), Applications of Multi-Objective Evolutionary Algorithms, pp. 393--425, World Scientific, Singapore, 2004.
  523. Rajeev Kumar, P. K. Singh and P. P. Chakrabarti. Improved Quality of Solutions for Multiobjective Spanning Tree Problem Using Distributed Evolutionary Algorithm. in Luc Bougé and Viktor K. Prasanna, (editors), High Performance Computing (HiPC'2004), pp. 494--503, Springer, Lecture Notes in Computer Science, Vol. 3296, Bangalore, India, 2004.
  524. R. Kumar and P.K. Singh. Pareto Evolutionary Algorithm Hybridized with Local Search for Biobjective TSP, in Crina Grosan, Ajith Abraham and Hisao Ishibuchi (editors), Hybrid Evolutionary Algorithms, pp. 361--398, Springer, Heidelberg, 2007.
  525. Praveen Kumar and Pavol Bauer. Progressive Design Methodology for Design of Engineering Systems. in Yoel Tenne and Chi-Keong Goh (editors), Computational Intelligence in Expensive Optimization Problems, pp. 571--607, Springer, Berlin, Germany, 2010. ISBN 978-3-642-10700-9.
  526. Sourav Kundu and Seichi Kawata. AI in Control System Design Using a New Paradigm for Design Representation. In J. S. Gero and F. Sudweeks, editors, Artificial Intelligence in Design, pages 135-150. Kluwer Academic Publishers, The Netherlands, 1996.
  527. Partha Pratim Kundu and Sushmita Mitra. Multi-objective Evolutionary Feature Selection, in Santanu Chaudhury, Sushmita Mitra, C. A. Murthy, P. S. Sastry and Sankar K. Pal (editors), Pattern Recognition and Machine Intelligence, Third International Conference, PReMI 2009, pp. 74--79, Springer. Lecture Notes in Computer Science Vol. 5909, New Delhi, India, December 16-20, 2009.
  528. Simon Künzli, Stefan Bleuler, Lothar Thiele and Eckart Zitzler. A Computer Engineering Benchmark Application for Multiobjective Optimizers, in Carlos A. Coello Coello and Gary B. Lamont (editors), Applications of Multi-Objective Evolutionary Algorithms, pp. 269--294, World Scientific, Singapore, 2004.
  529. S. Künzli, L. Thiele and E. Zitzler. Multi-criteria Decision Making in Embedded System Design, in B. M. Al-Hashimi (editor), System On Chip: Next Generation Electronics, pp. 3--28, IEE Press, London, UK, 2006.
  530. Cheng Chien Kuo. A neural network based Particle Swarm Optimization for the trasnformers connections of a primary feeder considering multi-objective programming, in J. Wang, Z. Yi, J. M. Zurada, B. L. Lu and H. Yin (editors), Advances in Neural Networks - ISNN 2006, Third International Symposium on Neural Networks, pp. 1317-1323, Springer. Lecture Notes in Computer Science, Vol. 3972, Chengdu, China, 2006. ISBN 3-540-34437-3.
  531. Way Kuo and Rui Wan. Recent Advances in Optimal Reliability Allocation, in Gregory Levitin (editor), Computational Intelligence in Reliability Engineering. Evolutionary Techniques in Reliability Analysis and Optimization, pp. 1--36, Springer, Heidelberg, 2007.
  532. Sam Kwong and H. W. Chong. A Genetic Algorithm for Joint Optimization of Spare Capacity and Delay in Self-Healing Network, in Kay Chen Tan, Meng Hiot Lim, Xin Yao and Lipo Wang, (editors), Recent Advances in Simulated Evolution and Learning, pp. 542-561, World Scientific, Singapore, 2004.
  533. L

  534. Nikos D. Lagaros, Manolis Papadrakakis and Vagelis Plevris. Multiobjective Optimization of Space Structures under Static and Seismic Loading Conditions, in Ajith Abraham, Lakhmi Jain and Robert Goldberg (editors), Evolutionary Multiobjective Optimization: Theoretical Advances And Applications, pp. 273--300, Springer-Verlag, London, ISBN 1-85233-787-7, 2005.
  535. Michael Lahanas, Natasa Milickovic, Dimos Baltas and Nikolaos Zamboglou. Application of Multiobjective Evolutionary Algorithms for Dose Optimization Problems in Brachytherapy. In Eckart Zitzler, Kalyanmoy Deb, Lothar Thiele, Carlos A. Coello Coello and David Corne, editors, First International Conference on Evolutionary Multi-Criterion Optimization, pages 574-587. Springer-Verlag. Lecture Notes in Computer Science No. 1993, 2001.
  536. Michael Lahanas. Application of Multiobjective Evolutionary Optimization Algorithms in Medicine, in Carlos A. Coello Coello and Gary B. Lamont (editors), Applications of Multi-Objective Evolutionary Algorithms, pp. 365--391, World Scientific, Singapore, 2004.
  537. Gary B. Lamont, Mark P. Kleeman and Richard O. Day. Multi-Objective Evolutionary Algorithms for Computer Science Applications, in Carlos A. Coello Coello and Gary B. Lamont (editors), Applications of Multi-Objective Evolutionary Algorithms, pp. 451--481, World Scientific, Singapore, 2004.
  538. J. Dario Landa Silva, Edmund K. Burke and Sanja Petrovic. An Introduction to Multiobjective Metaheuristics for Scheduling and Timetabling, in Xavier Gandibleux, Marc Sevaux, Kenneth Sörensen and Vincent T'kindt (editors), Metaheuristics for Multiobjective Optimisation, pp. 91--129, Springer. Lecture Notes in Economics and Mathematical Systems Vol. 535, Berlin, 2004.
  539. J.D. Landa Silva and E.K. Burke. Using Diversity to Guide the Search in Multi-Objective Optimization, in Carlos A. Coello Coello and Gary B. Lamont (editors), Applications of Multi-Objective Evolutionary Algorithms, pp. 727--751, World Scientific, Singapore, 2004.
  540. Ricardo Landa Becerra and Carlos A. Coello Coello. Solving Hard Multiobjective Optimization Problems Using e-Constraint with Cultured Differential Evolution, in Thomas Philip Runarsson, Hans-Georg Beyer, Edmund Burke, Juan J. Merelo-Guervós, L. Darrell Whitley and Xin Yao (editors), Parallel Problem Solving from Nature - PPSN IX, 9th International Conference, pp. 543--552, Springer. Lecture Notes in Computer Science Vol. 4193, Reykjavik, Iceland, September 2006.
  541. Ricardo Landa-Becerra, Luis V. Santana-Quintero and Carlos A. Coello Coello. Knowledge Incorporation in Multi-Objective Evolutionary Algorithms, in Ashish Ghosh, Satchidananda Dehuri and Susmita Ghosh (editors), Multi-objective Evolutionary Algorithms for Knowledge Discovery from Data Bases, pp. 23--46, Springer, Berlin, 2008, ISBN 978-3-540-77466-2 .
  542. Ricardo Landa Becerra and Luis Gerardo de la Fraga. Triangulation Using Differential Evolution, in Mario Giacobini et al. (editors), Applications of Evolutionary Computing. EvoWorkshops 2008: EvoCOMNET, EvoFIN, EvoHOT, EvoIASP, EvoMUSART, EvoNUM, EvoSTOC and EvoTransLog, pp. 359--364, Springer, Lecture Notes in Computer Science Vol. 4974, Naples, Italy, March 2008.
  543. William B. Langdon. Data structures and genetic programming. In Peter J. Angeline and Kenneth E. Kinnear, Jr., editors, Advances in Genetic Programming 2, chapter 20, pages 395-414. MIT Press, Cambridge, MA, USA, 1996.
  544. W. B. Langdon and P. C. Treleaven. Scheduling Maintenance of Electrical Power Transmission Networks Using Genetic Programming. In Kevin Warwick, Arthur Ekwue and Raj Aggarwal, editors, Artificial Intelligence Techniques in Power Systems, chapter 10, pages 220-237. IEE, 1997.
  545. W. B. Langdon. Scheduling Planned Maintenance of Electrical Power Transmission Networks Using Genetic Algorithms. In Gennady K. Voronovsky and Serguey A. Sergeev, editors, Artificial Neural Networks and Genetic Algorithms in Power Engineering. OSNOVA, Ukraine, 1997. (in Russian).
  546. José Manuel Lanza-Gutiérrez, Juan Antonio Gómez-Pulido, Miguel A. Vega-Rodríguez and Juan Manuel Sánchez-Pérez. Optimizing Energy Consumption in Heterogeneous Wireless Sensor Networks by Means of Evolutionary Algorithms, in Cecilia Di Chio et al. (editors), Applications of Evolutionary Computation, EvoApplications 2012: EvoCOMNET, EvoCOMPLEX, EvoFIN, EvoGAMES, EvoHOT, EvoIASP, EvoNUM, EvoPAR, EvoRISK, EvoSTIM, and EvoSTOC, pp. 1--10, Springer. Lecture Notes in Computer Science Vol. 7248, Málaga, Spain, April 11-13, 2012.
  547. Adriana Lara, Sergio Alvarado, Shaul Salomon, Gideon Avigad, Carlos A. Coello Coello and Oliver Schütze. The Gradient Free Directed Search Method as Local Search within Multi-Objective Evolutionary Algorithms, in Oliver Schütze, Carlos A. Coello Coello, Alexandru-Adrian Tantar, Emilia Tantar, Pascal Bouvry, Pierre Del Moral and Pierrick Legrand (editors), EVOLVE - A Bridge between Probability, Set Oriented Numerics, and Evolutionary Computation II, pp. 153--168, Springer, Advances in Intelligent Systems and Computing Vol. 175, Berlin, Germany, 2012, ISBN 978-3-642-31519-0 .
  548. Adriana Lara, Oliver Schütze and Carlos A. Coello Coello. On Gradient-based Local Search to Hybridize Multi-objective Evolutionary Algorithms, in Emilia Tantar, Alexandru-Adrian Tantar, Pascal Bouvry, Pierre Del Moral, Pierrick Legrand, Carlos A. Coello Coello and Oliver Schütze (editors), EVOLVE - A bridge between Probability, Set Oriented Numerics and Evolutionary Computation, Chapter 9, pp. 305--332, Springer-Verlag, Heidelberg, Germany, Studies in Computational Intelligence Vol. 447, 2013, ISBN 978-3-642-32725-4.
  549. Michael T. M. Emmerich, André H. Deutz and Johannes W. Kruisselbrink. On Quality Indicators for Black-Box Level Set Approximation, in Emilia Tantar, Alexandru-Adrian Tantar, Pascal Bouvry, Pierre Del Moral, Pierrick Legrand, Carlos A. Coello Coello and Oliver Schütze (editors), EVOLVE - A bridge between Probability, Set Oriented Numerics and Evolutionary Computation, Chapter 4, pp. 157--185, Springer-Verlag, Heidelberg, Germany, Studies in Computational Intelligence Vol. 447, 2013, ISBN 978-3-642-32725-4.
  550. Valerio Lattarulo, Jin Zhang and Geoffrey T. Parks. Application of the MOAA to Satellite Constellation Refueling Optimization, in Robin C. Purshouse, Peter J. Fleming, Carlos M. Fonseca, Salvatore Greco and Jane Shaw (editors), Evolutionary Multi-Criterion Optimization, 7th International Conference, EMO 2013, pp. 669--684, Springer. Lecture Notes in Computer Science Vol. 7811, Sheffield, UK, March 19-22, 2013.
  551. Nando Laumanns, Marco Laumanns and Dirk Neunzig. Multi-objective Design Space Exploration of Road Trains with Evolutionary Algorithms. In Eckart Zitzler, Kalyanmoy Deb, Lothar Thiele, Carlos A. Coello Coello and David Corne, editors, First International Conference on Evolutionary Multi-Criterion Optimization, pages 612-623. Springer-Verlag. Lecture Notes in Computer Science No. 1993, 2001.
  552. Marco Laumanns, Eckart Zitzler and Lothar Thiele. On the Effects of Archiving, Elitism and Density Based Selection in Evolutionary Multi-objective Optimization. In Eckart Zitzler, Kalyanmoy Deb, Lothar Thiele, Carlos A. Coello Coello and David Corne, editors, First International Conference on Evolutionary Multi-Criterion Optimization, pages 181-196. Springer-Verlag. Lecture Notes in Computer Science No. 1993, 2001.
  553. Marco Laumanns. Self Adaptation and Convergence of Multiobjective Evolutionary Algorithms in Continuous Search Spaces, in Ajith Abraham, Lakhmi Jain and Robert Goldberg (editors), Evolutionary Multiobjective Optimization. Theoretical Advances and Applications, pp. 33--53, Springer, USA, 2005.
  554. Khoi Le, Dario Landa-Silva and Hui Li. An Improved Version of Volume Dominance for Multi-Objective Optimisation, in Matthias Ehrgott, Carlos M. Fonseca, Xavier Gandibleux, Jin-Kao Hao and Marc Sevaux (editors), Evolutionary Multi-Criterion Optimization. 5th International Conference, EMO 2009, pp. 231--245, Springer. Lecture Notes in Computer Science Vol. 5467, Nantes, France, April 2009.
  555. M. A. Lee and H. Esbensen. Fuzzy/Multiobjective Genetic Systems for Intelligent Systems Design Tools and Components, In Witold Pedrycz, editor, Fuzzy Evolutionary Computation, pages 57-80. Kluwer Academic Publishers, Boston, Massachusetts, 1997.
  556. In-Hee Lee, Sun Kim and Byoung-Tak Zhang. Multi-objective Evolutionary Probe Design Based on Thermodynamic Criteria for HPV Detection, in Chengqi Zhang, Hans W. Guesgen, and Wai K.Yeap (editors), Trends in Artificial Intelligence. 8th Pacific Rim International Conference on Artificial Intelligence (PRICAI'2004), pp. 742-750, Springer, Lecture Notes in Computer Science, Vol. 3157, Auckland, New Zealand, August 9-13 2004. ISBN 978-3-540-22817-2.
  557. Elaine Su-Qin Lee, Gade Pandu Rangaiah and Naveen Agrawal. Optimal Design of Chemical Processes for Multiple Economic and Environmental Objectives, in Rangaiah Gade Pandu (editor), Multi-Objective Optimization Techniques and Applications in Chemical Engineering, chapter 10, pp. 301--338, World Scientific, Singapore, 2009, ISBN 978-981-283-651-9.
  558. Fook Choon Lee, Gade Pandu Rangaiah and Dong-Yup Lee. Optimization of a Multi-Product Microbial Cell Factory for Multiple Objectives - A Paradigm for Metabolic Pathway Recipe, in Rangaiah Gade Pandu (editor), Multi-Objective Optimization Techniques and Applications in Chemical Engineering, chapter 13, pp. 401--428, World Scientific, Singapore, 2009, ISBN 978-981-283-651-9.
  559. Jung Song Lee, Lim Cheon Choi and Soon Cheol Park. Multi-Objective Genetic Algorithms, NSGA-II and SPEA2, for Document Clustering, in Tai-hoon Kim, Hojjat Adeli, Haeng-kon Kim, Heau-jo Kang, Kyung Jung Kim, Akingbehin Kiumi and Byeong-Ho Kang (editors), Software Engineering, Business Continuity, and Education, International Conferences ASEA, DRBC and EL 2011, pp. 219--227, Springer. Communications in Computer and Information Science Vol. 257, Jeju Island, Korea, December 8-10, 2011.
  560. Loo Hay Lee, Ek Peng Chew, Kee Hui Chua, Zhuo Sun and Lu Zhen. A Simulation Optimisation Framework for Container Terminal Layout Design, in Lihui Wang, Amos H. C. Ng and Kalyanmoy Deb (editors), Multi-objective Evolutionary Optimisation for Product Design and Manufacturing, Chapter 14, pp. 385--400, Springer, London, UK, 2011, ISBN 978-0-85729-617-7.
  561. Guillermo Leguizamón and Carlos A. Coello Coello. Multi-Objective Ant Colony Optimization: A Taxonomy and Review of Approaches, in Satchidanada Dehuri, Susmita Ghosh and Sung Bae Cho (editors), Integration of Swarm Intelligence and Artificial Neural Network, Chapter 3, pp. 67--94, World Scientific, Singapore, 2011, ISBN 978-981-4280-14-3 .
  562. Matej Leps. Single and Multi-Objective Optimization in Civil Engineering, in William Annicchiarico, Jacques Périaux, Miguel Cerrolaza and Gabriel Winter (editors), Evolutionary Algorithms and Intelligent Tools in Engineering Optimization, pp. 322--342, WIT Press, CIMNE Barcelona, Southampton, Boston, 2005, ISBN 1-84564-038-1.
  563. Andrew Lewis, Sanaz Mostaghim and Marcus Randall. Evolutionary Population Dynamics and Multi-Objective Optimisation Problems, in Lam Thu Bui and Sameer Alam (editors), Multi-Objective Optimization in Computational Intelligence: Theory and Practice, pp. 185--206, Information Science Reference, Hershey, PA, USA, 2008, ISBN 978-1-59904-498-9.
  564. Andrew Lewis, Sanaz Mostaghim and Ian Scriven. Asynchronous Multi-Objective Optimisation in Unreliable Distributed Environments, in Andrew Lewis, Sanaz Mostaghim and Marcus Randall (editors), Biologically-Inspired Optimisation Methods, pp. 51--78, Springer, 2009. ISBN 978-3-642-01261-7.
  565. Andrew Lewis, Marcus Randall, Amir Galehdar, David Thiel and Gerhard Weis. Using Ant Colony Optimisation to Construct Meander-Line RFID Antennas, in Andrew Lewis, Sanaz Mostaghim and Marcus Randall (editors), Biologically-Inspired Optimisation Methods, pp. 189--217, Springer, 2009. ISBN 978-3-642-01261-7 .
  566. Juan Carlos Leyva López, Diego Alonso Gastélum Chavira and Margarita Urías Ruiz. An Application of a Multicriteria Approach to Compare Economic Sectors: The Case of Sinaloa, Mexico, in Robin C. Purshouse, Peter J. Fleming, Carlos M. Fonseca, Salvatore Greco and Jane Shaw (editors), Evolutionary Multi-Criterion Optimization, 7th International Conference, EMO 2013, pp. 710--725, Springer. Lecture Notes in Computer Science Vol. 7811, Sheffield, UK, March 19-22, 2013.
  567. Christian Lezcano, Diego Pinto and Benjamín Barán. Team Algorithms Based on Ant Colony Optimization - A New Multi-Objective Optimization Approach, in Günter Rudolph, Thomas Jansen, Simon Lucas, Carlo Poloni and Nicola Beume (editors), Parallel Problem Solving from Nature--PPSN X, pp. 773--783, Springer, Lecture Notes in Computer Science Vol. 5199, Dortmund, Germany, September 2008.
  568. Hui Li and Qingfu Zhang. A Multiobjective Differential Evolution Based on Decomposition for Multiobjective Optimization with Variable Linkages, in Thomas Philip Runarsson, Hans-Georg Beyer, Edmund Burke, Juan J. Merelo-Guervós, L. Darrell Whitley and Xin Yao (editors), Parallel Problem Solving from Nature - PPSN IX, 9th International Conference, pp. 583--592, Springer. Lecture Notes in Computer Science Vol. 4193, Reykjavik, Iceland, September 2006.
  569. Rui Li, Jeroen Eggermont, Ofer M. Shir, Michael T. M. Emmerich, Thomas Bäck, Jouke Dijkstra and Johan H. C. Reiber. Mixed-Integer Evolution Strategies with Dynamic Niching, in Günter Rudolph, Thomas Jansen, Simon Lucas, Carlo Poloni and Nicola Beume (editors), Parallel Problem Solving from Nature--PPSN X, pp. 246-255, Springer, Lecture Notes in Computer Science Vol. 5199, Dortmund, Germany, September 2008.
  570. Miqing Li, Jinhua Zheng and Jun Wu. Improving NSGA-II Algorithm Based on Minimum Spanning Tree, in Xiaodong Li, Michael Kirley, Mengjie Zhang, David Green, Vic Ciesielski, Hussein Abbass, Zbigniew Michalewicz, Tim Hendtlass, Kalyanmoy Deb, Kay Chen Tan, Jürgen Branke and Yuhui Shi (editors), Simulated Evolution and Learning, 7th International Conference, SEAL 2008, pp. 170--179, Springer. Lecture Notes in Computer Science Vol. 5361, Melbourne, Australia, December 7-10, 2008.
  571. Hui Li and Dario Landa-Silva. An Elitist GRASP Metaheuristic for the Multi-Objective Quadratic Assignment Problem, in Matthias Ehrgott, Carlos M. Fonseca, Xavier Gandibleux, Jin-Kao Hao and Marc Sevaux (editors), Evolutionary Multi-Criterion Optimization. 5th International Conference, EMO 2009, pp. 481--494, Springer. Lecture Notes in Computer Science Vol. 5467, Nantes, France, April 2009.
  572. Miqing Li and Jinhua Zheng. Spread Assessment for Evolutionary Multi-Objective Optimization, in Matthias Ehrgott, Carlos M. Fonseca, Xavier Gandibleux, Jin-Kao Hao and Marc Sevaux (editors), Evolutionary Multi-Criterion Optimization. 5th International Conference, EMO 2009, pp. 216--230, Springer. Lecture Notes in Computer Science Vol. 5467, Nantes, France, April 2009.
  573. Jun Li. Compromise Approach-Based Genetic Algorithm for Constrained Multiobjective Portfolio Selection Model. in Yong Shi, Shouyang Wang, Yi Peng, Jianping Li and Yong Zeng, (editors), Cutting-Edge Research Topics on Multiple Criteria Decision Making (MCDM'2009), pp. 697--704, Springer, Communications in Computer and Information Science, Vol. 35, Heidelberg, Germany, 2009.
  574. Miqing Li, Jinhua Zheng, Ke Li, Qizhao Yuan and Ruimin Shen. Enhancing Diversity for Average Ranking Method in Evolutionary Many-Objective Optimization. in Robert Schaefer, Carlos Cotta, Joanna Kolodziej and Günter Rudolph (editors) Parallel Problem Solving from Nature--PPSN XI, 11th International Conference, Proceedings, Part I, pp. 647--656, Springer, Lecture Notes in Computer Science Vol. 6238, Kraków, Poland, September, 2010.
  575. Li Li, Pengyi Yang, Ling Ou, Zili Zhang and Peng Cheng. Genetic Algorithm-Based Multi-objective Optimisation for QoS-Aware Web Services Composition, in Yaxin Bi and Mary-Anne Williams (editors), Knowledge Science, Engineering and Management, 4th International Conference, KSEM 2010, pp. 549--554, Springer. Lecture Notes in Artificial Intelligence Vol. 6291, Belfast, Northern Ireland, UK, September 1-3, 2010.
  576. Zhiyong Li, Dong Chen, Ahmed Sallam and Li Zhao. Novel Multi-Objective Genetic Algorithm Based on Static Bayesian Game Strategy, in Ying Tan, Yuhui Shi and Kay Chen Tan (editors), Advances in Swarm Intelligence, First International Conference, ICSI 2010, pp. 612--619, Springer. Lecture Notes in Computer Science Vol. 6145, Beijing, China, June 12-15, 2010.
  577. Junqing Li, Quanke Pan, Shengxian Xie and Jing Liang. A Hybrid Pareto-Based Tabu Search for Multi-objective Flexible Job Shop Scheduling Problem with E/T Penalty, in Ying Tan, Yuhui Shi and Kay Chen Tan (editors), Advances in Swarm Intelligence, First International Conference, ICSI 2010, pp. 620--627, Springer. Lecture Notes in Computer Science Vol. 6145, Beijing, China, June 12-15, 2010.
  578. Xiaodong Li. Developing Niching Algorithms in Particle Swarm Optimization, in Bijaya Ketan Panigrahi, Yuhui Shi and Meng-Hiot Lim (editors), Handbook of Swarm Intelligence. Concepts, Principles and Applications, pp. 67--88, Springer-Verlag, Belin, Germany, 2011. ISBN 978-3-642-17389-9.
  579. Shaobo Li, Xin Ma, Qin Li and Guanci Yang. Multi-Objective Evolutionary Algorithm Based on Improved Clonal Selection, in Yuanxu Yu, Zhengtao Yu and Jingying Zhao (editors), Computer Science for Environmental Engineering and EcoInformatics, International Workshop, CSEEE 2011, pp. 218--223, Springer. Communications in Computer and Information Science Vol. 159, Kunming, China, July 29-31, 2011.
  580. Weidong Li, Lihui Wang, Xinyu Li and Liang Gao. Intelligent Optimisation for Integrated Process Planning and Scheduling, in Lihui Wang, Amos H.C. Ng and Kalyanmoy Deb (editors), Multi-objective Evolutionary Optimisation for Product Design and Manufacturing, Chapter 10, pp. 305--324, Springer, London, UK, 2011, ISBN 978-0-85729-617-7.
  581. Miqing Li, Shengxiang Yang, Xiaohui Liu and Kang Wang. IPESA-II: Improved Pareto Envelope-Based Selection Algorithm II, in Robin C. Purshouse, Peter J. Fleming, Carlos M. Fonseca, Salvatore Greco and Jane Shaw (editors), Evolutionary Multi-Criterion Optimization, 7th International Conference, EMO 2013, pp. 143--155, Springer. Lecture Notes in Computer Science Vol. 7811, Sheffield, UK, March 19-22, 2013.
  582. Miqing Li, Shengxiang Yang, Xiaohui Liu and Ruimin Shen. A Comparative Study on Evolutionary Algorithms for Many-Objective Optimization, in Robin C. Purshouse, Peter J. Fleming, Carlos M. Fonseca, Salvatore Greco and Jane Shaw (editors), Evolutionary Multi-Criterion Optimization, 7th International Conference, EMO 2013, pp. 261--275, Springer. Lecture Notes in Computer Science Vol. 7811, Sheffield, UK, March 19-22, 2013.
  583. Xuekang Li, Xiaohong Hao, Yi Chen, Muhao Zhang and Bei Peng. Multi-Objective Optimizations of Structural Parameter Determination for Serpentine Channel Heat Sink, in Anna I. Esparcia-Alcázar et al. (editors), Applications of Evolutionary Computation, 16th European Conference, EvoApplications 2013, pp. 449--458, Springer. Lecture Notes in Computer Science Vol. 7835, Vienna, Austria, April 3-5, 2013.
  584. Arnaud Liefooghe, Laetitia Jourdan, Thomas Legrand, Jérémie Humeau and El-Ghazali Talbi. ParadisEO-MOEO: A Software Framework for Evolutionary Multi-Objective Optimization. in Carlos A. Coello Coello, Clarisse Dhaenens, and Laetitia Jourdan, (editors), Advances in Multi-Objective Nature Inspired Computing, chapter 5, pp. 87--117, Springer, Studies in Computational Intelligence, Vol. 272, Berlin, Germany, 2010, ISBN 978-3-642-11217-1.
  585. G. E. Liepins, M. R. Hilliard, J. Richardson and M. Palmer. Genetic algorithms application to set covering and travelling salesman problems. In D. E. Brown and C. C. White, editors, Operations research and Artificial Intelligence: The integration of problem-solving strategies, pages 29-57. Kluwer Academic, Norwell, Massachusetts, 1990.
  586. Dudy Lim, Yew-Soon Ong, Meng-Hiot Lim and Yaochu Jin. Single/Multi-objective Inverse Robust Evolutionary Design Methodology in the Presence of Uncertainty, in Shengxiang Yang, Yew Soon Ong and Yaochu Jin (editors), Evolutionary Computation in Dynamic and Uncertain Environments, pp. 437--456, Springer, 2007, ISBN 978-3-540-49772-1.
  587. Haifeng Ling, Yujun Zheng, Ziqiu Zhang and Xianzhong Zhou. A New Multi-Objective Particle Swarm Optimization Algorithm for Strategic Planning of Equipment Maintenance, in Ying Tan, Yuhui Shi, Yi Chai and Guoyin Wang (editors), Advances in Swarm Intelligence, Second International Conference, ICSI 2011, pp. 57--65, Springer. Lecture Notes in Computer Science Vol. 6729, Chongqing, China, June 12-15, 2011.
  588. Jing Liu, Weicai Zhong, Li-cheng Jiao and Fang Liu. Multiobjective Optimization Based on Coevolutionary Algorithm. in Shusaku Tsumoto, Roman Slowinski, Jan Komorowski, and Jerzy W. Grzymala-Busse, (editors), Rough Sets and Current Trends in Computing. 4th International Conference (RSCTC'04), pp. 774--779, Springer, Lecture Notes in Computer Science, Vol. 3066, Uppsala, Sweden, 2004.
  589. Chun-An Liu. New Multiobjective PSO Algorithm for Nonlinear Constrained Programming Problems, in Rubin Wang, Fanji Gu and Enhua Shen (editors), Advances in Cognitive Neurodynamics ICCN 2007, pp. 955--962, Springer, June 2008.
  590. Chun-An Liu. New Multiobjective PSO Algorithm for Nonlinear Constrained Programming Problems, in Rubin Wang, Fanji Gu and Enhua Shen (editors), Advances in Cognitive Neurodynamics (ICCN 2007), pp. 955-962, Springer., June 2008.
  591. Chun-An Liu. New Multiobjective PSO Algorithm for Nonlinear Constrained Programming Problems, in Rubin Wang and Fanji Gu amd Enhua Shen (editors), Advances in Cognitive Neurodynamics, Proceedings of the International Conference on Cognitive Neurodynamics - 2007, pp. 955--962, Springer, Berlin, 2008, ISBN 978-1-4020-8386-0.
  592. Yu Liu, Zhaofa Yan, Wentao Li, Mingwei Lv and Yuan Yao. An Automatic Niching Particle Swarm for Multimodal Function Optimization, in Ying Tan, Yuhui Shi and Kay Chen Tan (editors), Advances in Swarm Intelligence, First International Conference, ICSI 2010, pp. 110--119, Springer. Lecture Notes in Computer Science Vol. 6145, Beijing, China, June 12-15, 2010.
  593. Shih-Hsi Liu, Matej Crepinsek and Marjan Mernik. Analysis of Vega and Spea2 Using Exploration and Exploitation Measures, in Bogdan Filipic and Jurij Silc (editors), Bioinspired Optimization Methods and Their Applications, Proceedings of the Fifth International Conference on Bioinspired Optimization Methods and their Applications, BIOMA 2012, pp. 97--108, Jozef Stefan Institute, Bohinj, Slovenia, May 2012.
  594. Herve Locteau, Romain Raveaux, Sebastien Adam, Yves Lecourtier, Pierre Heroux and Eric Trupin. Polygonal Approximation of Digital Curves Using a Multi-objective Genetic Algorithm, in Wenyin Liu and Josep Llad&ocaute;s (editors), Graphics Recognition. Ten Years Review and Future Perspectives, 6th Internation Workshop, GREC 2005, pp. 300--311, Springer. Lecture Notes in Computer Science Vol. 3926, Hong Kong, China, August 25-26, 2005.
  595. A.G. Lopez-Herrera, E. Herrera-Viedma, F. Herrera, C. Porcel and S. Alonso. Multi-objective Evolutionary Algorithms in the Automatic Learning of Boolean Queries: A Comparative Study, in Oscar Castillo, Patricia Melin, Oscar Montiel Ross, Roberto Sepúlveda Cruz, Witold Pedrycz and Janusz Kacprzyk (editors), Theoretical Advances and Applications of Fuzzy Logic and Soft Computing, pp. 71--80, Springer-Verlag, Berlin, 2007.
  596. Antonio López Jaimes and Carlos A. Coello Coello. An Introduction to Multi-Objective Evolutionary Algorithms and some of Their Potential Uses in Biology, in Tomasz Smolinski, Mariofanna G. Milanova and Aboul-Ella Hassanien (editors), Applications of Computational Intelligence in Biology: Current Trends and Open Problems, pp. 79--102, Springer, Berlin, 2008, ISBN 978-3-540-78533-0 .
  597. Antonio López Jaimes, Carlos A. Coello Coello and Jesús E. Urías Barrientos. Online Objective Reduction to Deal with Many-Objective Problems, in Matthias Ehrgott, Carlos M. Fonseca, Xavier Gandibleux, Jin-Kao Hao and Marc Sevaux (editors), Evolutionary Multi-Criterion Optimization. 5th International Conference, EMO 2009, pp. 423--437, Springer. Lecture Notes in Computer Science Vol. 5467, Nantes, France, April 2009.
  598. Antonio López Jaimes and Carlos A. Coello Coello. Multi-Objective Evolutionary Algorithms: A Review of the State-of-the-Art and some of their Applications in Chemical Engineering, in Rangaiah Gade Pandu (editor), Multi-Objective Optimization Techniques and Applications in Chemical Engineering, Chapter 3, pp. 61--90, World Scientific, Singapore, 2009, ISBN 978-981-283-651-9 .
  599. Antonio López Jaimes, Luis Vicente Santana Quintero and Carlos A. Coello Coello. Ranking Methods in Many-objective Evolutionary Algorithms, in Raymond Chiong (Editor), Nature-Inspired Algorithms for Optimisation, pp. 413--434, Springer, Berlin, ISBN 978-3-642-00266-3, 2009.
  600. Antonio López Jaimes and Carlos A. Coello Coello. Applications of Parallel Platforms and Models in Evolutionary Multi-Objective Optimization, in Andrew Lewis, Sanaz Mostaghim and Marcus Randall (editors), Biologically-Inspired Optimisation Methods, pp. 23--49, Springer, 2009, ISBN 978-3-642-01261-7 .
  601. Antonio López Jaimes, Hernán Aguirre, Kiyoshi Tanaka and Carlos A. Coello Coello. Objective Space Partitioning Using Conflict Information for Many-Objective Optimization, Robert Schaefer, Carlos Cotta, Joanna Kolodziej and Günter Rudolph (editors), Parallel Problem Solving from Nature--PPSN XI, 11th International Conference, Proceedings, Part I, pp. 657--666, Springer, Lecture Notes in Computer Science Vol. 6238, Kraków, Poland, September 2010. .
  602. Manuel López-Ibáñez and Thomas Stützle. Automatic Configuration of Multi-Objective ACO Algorithms. in Marco Dorigo, Mauro Birattari, Gianni A. Di Caro, René Doursat, Andries P. Engelbrecht, Dario Floreano, Luca Maria Gambardella, Roderich Gross, Erol Sahin, Hiroki Sayama and Thomas Stützle, (editors), Swarm Intelligence. 7th International Conference, ANTS 2010, pp. 95--106, Springer, Lecture Notes in Computer Science Vol. 6234, Brussels, Belgium, September 8-10, 2010.
  603. Manuel López-Ibáñez, Luís Paquete and Thomas Stützle.Exploratory Analysis of Stochastic Local Search Algorithms in Biobjective Optimization, in Thomas Bartz-Beielstein, Marco Chiarandini, Luís Paquete and Mike Preuss (editors), Experimental Methods for the Analysis of Optimization Algorithms, Chapter 9, pp. 209--222, Springer, Heidelberg, 2010.
  604. Antonio López Jaimes, Saúl Zapotecas Martínez and Carlos A. Coello Coello. An Introduction to Multiobjective Optimization Techniques, in António Gaspar-Cunha and José António Covas (editors), Optimization in Polymer Processing, Chapter 3, pp. 29--57, Nova Science Publishers, New York, USA, 2011, ISBN 978-1-61122-818-2.
  605. Antonio López, Carlos A. Coello Coello, Akira Oyama and Kozo Fujii. An Alternative Preference Relation to Deal with Many-Objective Optimization Problems, in Robin C. Purshouse, Peter J. Fleming, Carlos M. Fonseca, Salvatore Greco and Jane Shaw (editors), Evolutionary Multi-Criterion Optimization, 7th International Conference, EMO 2013, pp. 291--306, Springer. Lecture Notes in Computer Science Vol. 7811, Sheffield, UK, March 19-22, 2013.
  606. Antonio López Jaimes and Carlos A. Coello Coello. Interactive Approaches Applied to Multiobjective Evolutionary Algorithms, in Michael Doumpos and Evangelos Grigoroudis (editors), Multicriteria Decision Aid and Artificial Intelligence: Links, Theory and Applications, Chapter 8, pp. 191--207, John Wiley & Sons, Chichester, United Kingdom, 2013, ISBN 978-1-119-97639-4.
  607. Alexander V. Lotov and Kaisa Miettinen. Visualizing the Pareto Frontier, in Jürgen Branke, Kalyanmoy Deb, Kaisa Miettinen and Roman Slowinski (editors), Multiobjective Optimization. Interactive and Evolutionary Approaches, pp. 213--243, Springer. Lecture Notes in Computer Science Vol. 5252, Berlin, Germany, 2008.
  608. J.M. Lucas, H. Martinez and F. Jimenez. Fuzzy Tuning for the Docking Maneuver Controller of an Automated Guided Vehicle, in Yaochu Jin (Editor), Multi-Objective Machine Learning, pp. 585--600, Springer. Studies in Computational Intelligence, Volume 16, Berlin, 2006.
  609. Martin Luerssen and David Powers. Fast Grammar-Based Evolution Using Memoization, in Robert Schaefer, Carlos Cotta, Joanna Kolodziej and Günter Rudolph (editors), Parallel Problem Solving from Nature--PPSN XI, 11th International Conference, Proceedings, Part II, pp. 502--511, Springer, Lecture Notes in Computer Science Vol. 6239, Kraków, Poland, September, 2010.
  610. Kai-Yew Lum, Pierre-Marie Jacquart and Mourad Sefrioui. Constrained Optimization of Multilayered Anti-reflection Coatings Using Genetic Algorithms, in Kay Chen Tan, Meng Hiot Lim, Xin Yao and Lipo Wang, (editors), Recent Advances in Simulated Evolution and Learning, pp. 603-322, World Scientific, Singapore, 2004.
  611. Erika Hernández Luna and Carlos A. Coello Coello. Using a Particle Swarm Optimizer with a Multi-Objective Selection Scheme to Design Combinational Logic Circuits, in Carlos A. Coello Coello and Gary B. Lamont (editors), Applications of Multi-Objective Evolutionary Algorithms, pp. 101--124, World Scientific, Singapore, 2004.
  612. Francisco Luna, Antonio J. Nebro and Enrique Alba. Parallel Evolutionary Multiobjective Optimization, in N. Nedjah, E. Alba and L. de Macedo Mourelle (editors), Parallel Evolutionary Computations, pp. 33--56, Springer, Berlin Heidelberg, 2006.
  613. María Luque, Oscar Cordón and Enrique Herrera-Viedma. A Multi-Objective Genetic Algorithm for Learning Linguistic Persistent Queries in Text Retrieval Environments, in Yaochu Jin (Editor), Multi-Objective Machine Learning, pp. 601--627, Springer. Studies in Computational Intelligence, Volume 16, Berlin, 2006.
  614. Thibaut Lust and Jacques Teghem. Two phase stochastic local search algorithms for the biobjective traveling salesman problem, in Enda Ridge, Thomas Stützle, Mauro Birattari and Holger H. Hoos (editors), Proceedings of SLS-DS 2007, Doctoral Symposium on Engineering Stochastic Local Search Algorithms, IRIDIA--Université Libre de Bruxelles, pp. 21--25, Brussels, Belgium, 2007.
  615. Thibaut Lust and Jacques Teghem. Multiobjective Decomposition of Positive Integer Matrix: Application to Ratiotherapy, in Matthias Ehrgott, Carlos M. Fonseca, Xavier Gandibleux, Jin-Kao Hao and Marc Sevaux (editors), Evolutionary Multi-Criterion Optimization. 5th International Conference, EMO 2009, pp. 335--349, Springer. Lecture Notes in Computer Science Vol. 5467, Nantes, France, April 2009.
  616. Thibaut Lust and Jacques Teghem. The Multiobjective Traveling Salesman Problem: A Survey and a New Approach. in Carlos A. Coello Coello, Clarisse Dhaenens and Laetitia Jourdan, (editors), Advances in Multi-Objective Nature Inspired Computing, chapter 6, pp. 119--141, Springer, Studies in Computational Intelligence, Vol. 272, Berlin, Germany, 2010, ISBN 978-3-642-11217-1.
  617. Robert J. Lygoe, Mark Cary and Peter J. Fleming. A Real-World Application of a Many-Objective Optimisation Complexity Reduction Process, in Robin C. Purshouse, Peter J. Fleming, Carlos M. Fonseca, Salvatore Greco and Jane Shaw (editors), Evolutionary Multi-Criterion Optimization, 7th International Conference, EMO 2013, pp. 641--655, Springer. Lecture Notes in Computer Science Vol. 7811, Sheffield, UK, March 19-22, 2013.
  618. M

  619. Yolanda Mack, Tushar Goel, Wei Shyy and Raphael Haftka. Surrogate Model-Based Optimization Framework: A Case Study in Aerospace Design, in Shengxiang Yang, Yew Soon Ong and Yaochu Jin (editors), Evolutionary Computation in Dynamic and Uncertain Environments, pp. 323--342, Springer, 2007, ISBN 978-3-540-49772-1.
  620. Salomãao Sampaio Madeiro, Fernando Buarque de Lima-Neto, Carmelo José Albanez Bastos-Filho and Elliackin Messias do Nascimento Figueiredo. Density as the Segregation Mechanism in Fish School Search for Multimodal Optimization Problems, in Ying Tan, Yuhui Shi, Yi Chai and Guoyin Wang (editors), Advances in Swarm Intelligence, Second International Conference, ICSI 2011, pp. 563--572, Springer. Lecture Notes in Computer Science Vol. 6729, Chongqing, China, June 12-15, 2011.
  621. R.C. Mancini, S.J. Louis, I.E. Golovkin, L.A. Welser, Y. Ochi, K. Fujita, H. Nishimura, J.A. Koch, R.W. Lee, J.A. Delettrez, F.J. Marshall, I. Uschmann, E. Foerster and L. Kleinin. Multi-Objective Spectroscopic Data Analysis of Inertial Confinement Fusion Implosion Cores: Plasma Gradient Determination, in Carlos A. Coello Coello and Gary B. Lamont (editors), Applications of Multi-Objective Evolutionary Algorithms, pp. 341--364, World Scientific, Singapore, 2004.
  622. Kuntinee Maneeratana, Kittipong Boonlong and Nachol Chaiyaratana. Compressed-Objective Genetic Algorithm, in Thomas Philip Runarsson, Hans-Georg Beyer, Edmund Burke, Juan J. Merelo-Guervós, L. Darrell Whitley and Xin Yao (editors), Parallel Problem Solving from Nature - PPSN IX, 9th International Conference, pp. 473--482, Springer. Lecture Notes in Computer Science Vol. 4193, Reykjavik, Iceland, September 2006.
  623. Ester Bernardó-Mansilla, Xavier Llorà and Ivan Traus. Multi-objective Learning Classifier Systems, in Yaochu Jin (Editor), Multi-Objective Machine Learning, pp. 261--288, Springer. Studies in Computational Intelligence, Volume 16, Berlin, 2006.
  624. S. Afshin Mansouri. Elimination of Exceptional Elements in Cellular Manufacturing Systems using Multi-Objective Genetic Algorithms, in Carlos A. Coello Coello and Gary B. Lamont (editors), Applications of Multi-Objective Evolutionary Algorithms, pp. 505--527, World Scientific, Singapore, 2004.
  625. V.K. Manupati, J.J. Thakkar, Priyabrata Mohapatra, Ajay Kumar and M.K. Tiwari. Process Plan and Scheduling Integration for Near Optimal Process Plans in Networked Based Manufacturing Using Controlled Elitist NSGA-II and Territory Defining Algorithms, in Bijaya Ketan Panigrahi, Swagatam Das, Ponnuthurai Nagaratnam Suganthan and Pradipta Kumar Nanda (editors), Swarm, Evolutionary, and Memetic Computing, Third International Conference, SEMCCO 2012, pp. 754--760, Springer. Lecture Notes in Computer Science Vol. 7677, Bhubaneswar, India, December 20-22, 2012.
  626. Marco Manzan, Enrico Nobile, Stefano Pieri and Francesco Pinto. Multi-objective Optimization for Problems Involving Convective Heat Transfer. In Dominique Thévenin and Gábor Janiga, (editors), Optimization and Computational Fluid Dynamics, chapter 8, pp. 217--266. Springer-Verlag, Berlin, 2008.
  627. P. Maragathavalli and S. Kanmani. Multi-objective Optimization for Object-oriented Testing Using Stage-Based Genetic Algorithm, in Vinu V. Das and Janahanlal Stephen (editors), Advances in Communication, Network, and Computing, Third International Conference, CNC 2012, pp. 246--249, Springer. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering Vol. 108, Chennai, India, February 24-25, 2012.
  628. N. Marco, S. Lanteri, J.-A. Desideri and J. Périaux. A Parallel Genetic Algorithm for Multi-Objective Optimization in Computational Fluid Dynamics, In Kaisa Miettinen, Marko M. Mäkelä, Pekka Neittaanmäki and Jacques Périaux, editors, Evolutionary Algorithms in Engineering and Computer Science, chapter 22, pages 445-456. John Wiley & Sons, Ltd, Chichester, UK, 1999.
  629. Giovanni Mariani, Chantal Ykman-Couvreur, Prabhat Avasare, Geert Vanmeerbeeck, Gianluca Palermo, Cristina Silvano and Vittorio Zaccaria. Design Space Exploration for Run-Time Management of a Reconfigurable System for Video Streaming, in Cristina Silvano, William Fornaciari and Eugenio Villar (editors), Multi-objective Design Space Exploration of Multiprocessor SoC Architectures, The MULTICUBE Approach, Chapter 9, pp. 189--204, Springer, New York, USA, 2011, ISBN 978-1-4419-8836-2.
  630. Carlos E. Mariano-Romero and Víctor Alcocer-Yamanaka. Multiobjective Optimization of Water-Using Systems, in Nadia Nedjah and Luiza de Macedo Mourelle (editors), Real-World Multi-Objective System Engineering, pp. 163--192, Nova Science Publishers, New York, 2005.
  631. Urszula Markowska-Kaczmar and Krystyna Mularczyk. GA-Based Pareto Optimization for Rule Extraction from Neural Networks, in Yaochu Jin (Editor), Multi-Objective Machine Learning, pp. 313--338, Springer. Studies in Computational Intelligence, Volume 16, Berlin, 2006.
  632. Alfonso E. Márquez-Chamorro, Federico Divina, Jesús S. Aguilar-Ruiz, Jaume Bacardit, Gualberto Asencio-Cortés and Cosme E. Santiesteban-Toca. A NSGA-II Algorithm for the Residue-Residue Contact Prediction, in Mario Giacobini, Leonardo Vanneschi and William S. Bush (editors), Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics, 10th European Conference, EvoBIO 2012, pp. 234--244, Springer. Lecture Notes in Computer Science Vol. 7246, Málaga, Spain, April 11-13, 2012.
  633. Marzio Marseguerra, Enrico Zato and Luca Podofillini. Genetic Algorithms and Monte Carlo Simulation for the Optimization of System Design and Operation, in Gregory Levitin (editor), Computational Intelligence in Reliability Engineering. Evolutionary Techniques in Reliability Analysis and Optimization, pp. 101--150, Springer, Heidelberg, 2007.
  634. Luis Martì, Jesús García, Antonio Berlanga and José M. Molina. Scalable Continuous Multiobjective Optimization with a Neural Network-Based Estimation of Distribution Algorithm, in Mario Giacobini et al. (editors), Applications of Evolutionary Computing. EvoWorkshops 2008: EvoCOMNET, EvoFIN, EvoHOT, EvoIASP, EvoMUSART, EvoNUM, EvoSTOC and EvoTransLog, pp. 535--544, Springer, Lecture Notes in Computer Science Vol. 4974, Naples, Italy, March 2008.
  635. Marcos Martinez, David Ferruz, Hector Posadas and Eugenio Villar. High-level modeling and exploration of a powerline communication network based on System-on-Chip, in Cristina Silvano, William Fornaciari and Eugenio Villar (editors), Multi-objective Design Space Exploration of Multiprocessor SoC Architectures, The MULTICUBE Approach, Chapter 7, pp. 145--170, Springer, New York, USA, 2011, ISBN 978-1-4419-8836-2.
  636. Sebastián Martorell, Sofía Carlos, José F. Villanueva and Ana Sánchez. Genetic Algorithm Applications in Surveillance and Maintenance Optimization, in Gregory Levitin (editor), Computational Intelligence in Reliability Engineering. Evolutionary Techniques in Reliability Analysis and Optimization, pp. 63-99, Springer, Heidelberg, 2007.
  637. L. Masi and M. Vasile. A Multi-Directional Modified Physarum Algorithm for Optimal Multi-Objective Discrete Decision Making, in Oliver Schütze, Carlos A. Coello Coello, Alexandru-Adrian Tantar, Emilia Tantar, Pascal Bouvry, Pierre Del Moral and Pierrick Legrand (editors), EVOLVE - A Bridge between Probability, Set Oriented Numerics, and Evolutionary Computation III, pp. 195--212, Springer. Studies in Computational Intelligence Vol. 500, Heidelberg, Germany, 2014, ISBN 978-3-319-01459-3.
  638. Masuduzzaman and G.P. Rangaiah. Multi-Objective Optimization Applications in Chemical Engineering, in Rangaiah Gade Pandu (editor), Multi-Objective Optimization Techniques and Applications in Chemical Engineering, Chapter 2, pp. 27--59, World Scientific, Singapore, 2009, ISBN 978-981-283-651-9.
  639. P.M. Mateo and I. Alberto. Re-implementing NSGA-II and SPEA2 using Pareto based Operators, in L.M. Esteban, B. Lacruz, F.J. López, P.M. Mateo, A. Pérez-Palomares, G. Sanz and C. Paroissin (editors), The Pyrenees International Workshop and Summer School on Statistics, Probability and Operations Research SPO 2009, pp. 99--108, Monografías Matemáticas "García de Galdeano" No. 36, Universidad de Zaragoza, Spain, December 2010, ISBN 978-84-15031-92-5.
  640. Alfonso Mateos and Antonio Jiménez. A Trapezoidal Fuzzy Numbers-Based Approach for Aggregating Group Preferences and Ranking Decision Alternatives in MCDM, in Matthias Ehrgott, Carlos M. Fonseca, Xavier Gandibleux, Jin-Kao Hao and Marc Sevaux (editors), Evolutionary Multi-Criterion Optimization. 5th International Conference, EMO 2009, pp. 365--379, Springer. Lecture Notes in Computer Science Vol. 5467, Nantes, France, April 2009.
  641. Semus M. McGovern and Surendra M. Gupta. Lexicographic Goal Programming and Assessment Tools for a Combinatorial Production Problem, in Lam Thu Bui and Sameer Alam (editors), Multi-Objective Optimization in Computational Intelligence: Theory and Practice, pp. 148--184, Information Science Reference, Hershey, PA, USA, 2008, ISBN 978-1-59904-498-9.
  642. Andrew McIntyre and Malcolm Heywood. Cooperative Problem Decomposition in Pareto Competitive Classifier Models of Coevolution, in Michael O'Neill, Leonardo Vanneschi, Steven Gustafson, Anna Isabel Esparcia Alcázar, Ivanoe De Falco, Antonio Della Cioppa and Ernesto Tarantino (Editors), Genetic Programming, 11th European Conference, EuroGP 2008, pp. 289--300, Springer, Lecture Notes in Computer Science Vol. 4971, Naples, Italy, March 2008.
  643. A. L. Medaglia. An evolutionary algorithm for project selection problems based on stochastic multiobjective linearly constrained optimization, in S.B. Graves and J.L. Ringuest (editors), Models and methods for project selection: concepts from management science, finance and information technology, pp. 163--189, Kluwer Academic Publishers, Boston, USA, 2003.
  644. Adriana Menchaca-Mendez and Carlos A. Coello Coello. Selection Operators Based on Maximin Fitness Function for Multi-Objective Evolutionary Algorithms, in Robin C. Purshouse, Peter J. Fleming, Carlos M. Fonseca, Salvatore Greco and Jane Shaw (editors), Evolutionary Multi-Criterion Optimization, 7th International Conference, EMO 2013, pp. 215--229, Springer. Lecture Notes in Computer Science Vol. 7811, Sheffield, UK, March 19-22, 2013.
  645. F. Menczer, W.N. Street and M. Degeratu. Evolving heterogeneous neural agents by local selection, In V. Honavar, M. Patel and K. Balakrishnan, editors, Advances in the Evolutionary Synthesis of Neural Systems. MIT Press, Cambridge, MA, 2000.
  646. Máximo Méndez and Blas Galván. Multi-Objective Evolutionary Algorithms Using the Working Point and the TOPSIS Method, in Roberto Moreno-Díaz, Franz Pichler and Alexis Quesada-Arencibia (editors), Computer Aided Systems Theory. EUROCAST 2007. 11th International Conference on Computer Aided Systems Theory, pp. 796-803, Springer, Lecture Notes in Computer Science, Vol. 4739, Las Palmas de Gran Canaria, Spain, February 12-16 2007. ISBN 978-3-540-75866-2.
  647. Luís Mendes, Eduardo J. Solteiro Pires, Paulo B. de Moura Oliveira, José A. Tenreiro Machado, Nuno M. Fonseca Ferreira, João Caldinhas Vaz and Maria J. Rosário. Design Optimization of Radio Frequency Discrete Tuning Varactors. in Mario Giacobini, Anthony Brabazon, Stefano Cagnoni, Gianni A. Di Caro, Anikó Ekárt, Anna Isabel Esparcia-Alcázar, Muddassar Farooq, Andreas Fink and Penousal Machado, (editors), Applications of Evolutionary Computing (EvoWorkshops 2009), pp. 343--352, Springer, Lecture Notes in Computer Science, Vol. 5484, Heidelberg, Germany, 2009.
  648. Máximo Méndez, Blas Galván, Daniel Salazar and David Greiner. Multiple-Objective Genetic Algorithm Using the Multiple Criteria Decision Making Method TOPSIS, in Vincent Barichard, Matthias Ehrgott, Xavier Gandibleux, and Vincent T'Kindt (editors), Multiobjective Programming and Goal Programming. Theoretical Results and Practical Applications, pp. 145-154, Springer, Lecture Notes in Economics and Mathematical Systems, Vol. 618, 2009. ISBN 978-3-540-85645-0.
  649. G. Meneghetti, V. Pediroda and C. Poloni. Application of a Multi Objective Genetic Algorithm and a Neural Network to the Optimisation of Foundry Processes. In Kaisa Miettinen, Marko M. Mäkelä, Pekka Neittaanmäki and Jacques Périaux, editors, Evolutionary Algorithms in Engineering and Computer Science, chapter 23, pages 457-470. John Wiley & Sons, Ltd, Chichester, UK, 1999.
  650. Mohammad Mesgarpour, Nureddin Kirkavak and Hakan Ozaktas. Bicriteria Scheduling Problem on the Two-Machine Flowshop Using Simulated Annealing. in Peter Cowling and Peter Merz, (editors), Evolutionary Computation in Combinatorial Optimization. 10th European Conference, EvoCOP 2010, pp. 166--177, Springer. Lecture Notes in Computer Science, Vol. 6022, Istanbul, Turkey, April, 2010.
  651. Efrén Mezura-Montes and Carlos A. Coello Coello. Use of Multiobjective Optimization Concepts to Handle Constraints in Genetic Algorithms, in Ajith Abraham, Lakhmi Jain and Robert Goldberg (editors), Evolutionary Multiobjective Optimization: Theoretical Advances And Applications, pp. 229--254, Springer-Verlag, London, ISBN 1-85233-787-7, 2005.
  652. Efrén Mezura-Montes and Carlos A. Coello Coello. Constrained Optimization via Multiobjective Evolutionary Algorithms, in Joshua Knowles, David Corne and Kalyanmoy Deb (Editors), Multi-Objective Problem Solving from Nature: From Concepts to Applications, pp. 53--75, Springer, Berlin, 2008, ISBN 978-3-540-72963-1 .
  653. Efrén Mezura-Montes, Edgar A. Portilla-Flores, Carlos A. Coello Coello, Jaime Alvarez-Gallegos and Carlos A. Cruz-Villar. An Evolutionary Approach to Solve a Novel Mechatronic Multiobjective Optimization Problem, in Patrick Siarry and Zbigniew Michalewicz (editors), Advances in Metaheuristic Methods for Hard Optimization, pp. 329--351, Springer, Berlin, 2008, ISBN 978-3-540-72959-4 .
  654. Efrén Mezura-Montes, Margarita Reyes-Sierra and Carlos A. Coello Coello. Multi-Objective Optimization using Differential Evolution: A Survey of the State-of-the-Art, in Uday K. Chakraborty (Editor), Advances in Differential Evolution, pp. 173--196, Springer, Berlin, 2008, ISBN 978-3-540-68827-3 .
  655. Zbigniew Michalewicz. Evolutionary Algorithms in Engineering Optimization, in William Annicchiarico, Jacques Périaux, Miguel Cerrolaza and Gabriel Winter (editors), Evolutionary Algorithms and Intelligent Tools in Engineering Optimization, pp. 26--51, WIT Press, CIMNE Barcelona, Southampton, Boston, 2005, ISBN 1-84564-038-1 .
  656. E. Michielssen and D. S. Weile. Electromagnetic System Design using Genetic Algorithms. In Genetic Algorithms and Evolution Strategies in Engineering and Computer Science, pages 267-288. John Wiley and Sons, England, 1995.
  657. Kaisa Miettinen, Kalyanmoy Deb, Johannes Jahn, Wlodzimierz Ogryczak, Koji Shimoyama and Rudolf Vetschera. Future Challenges, in Jürgen Branke, Kalyanmoy Deb, Kaisa Miettinen and Roman Slowinski (editors), Multiobjective Optimization. Interactive and Evolutionary Approaches, pp. 435--461, Springer. Lecture Notes in Computer Science Vol. 5252, Berlin, Germany, 2008.
  658. Kaisa Miettinen and Jussi Hakanen. Why Use Interactive Multi-Objective Optimization in Chemical Process Design?, in Rangaiah Gade Pandu (editor), Multi-Objective Optimization Techniques and Applications in Chemical Engineering, chapter 6, pp. 153--188, World Scientific, Singapore, 2009, ISBN 978-981-283-651-9 .
  659. Ludmil Mikhailov and Joshua Knowles. Priority Elicitation in the AHP by a Pareto Envelope-Based Selection Algorithm. in Matthias Ehrgott, Boris Naujoks, Theodor J. Stewart and Jyrki Wallenius, (editors), Multiple Criteria Decision Making for Sustainable Energy and Transportation Systems, pp. 249--257, Springer, Lecture Notes in Economics and Mathematical Systems Vol. 634, Heidelberg, Germany, 2010.
  660. Natasa Milickovic, Michael Lahanas, Dimos Baltas and Nikolaos Zamboglou. Comparison of Evolutionary and Deterministic Multiobjective Algorithms for Dose Optimization in Branchytherapy. In Eckart Zitzler, Kalyanmoy Deb, Lothar Thiele, Carlos A. Coello Coello and David Corne, editors, First International Conference on Evolutionary Multi-Criterion Optimization, pages 167-180. Springer-Verlag. Lecture Notes in Computer Science No. 1993, 2001.
  661. Fernanda L. Minku and Teresa B. Ludermir. EFuNN Ensembles Construction Using. Clustering Method and a Coevolutionary Multi-objective Genetic Algorithm, in Irwin King, Jun Wang, Laiwan Chan and DeLiang L. Wang (editors), Neural Information Processing. 13th International Conference (ICONIP 2006), pp. 884-891, Springer, Lecture Notes in Computer Science, Vol. 4234, Hong Kong, China, October 3-6 2006. ISBN 3-540-46484-0.
  662. Hans J.F. Moen, Nikolai B. Hansen, Harald Hovland and Jim Tørresen. Many-Objective Optimization Using Taxi-Cab Surface Evolutionary Algorithm, in Robin C. Purshouse, Peter J. Fleming, Carlos M. Fonseca, Salvatore Greco and Jane Shaw (editors), Evolutionary Multi-Criterion Optimization, 7th International Conference, EMO 2013, pp. 128--142, Springer. Lecture Notes in Computer Science Vol. 7811, Sheffield, UK, March 19-22, 2013.
  663. Kristof Van Moffaert, Madalina M. Drugan and Ann Nowé. Hypervolume-Based Multi-Objective Reinforcement Learning, in Robin C. Purshouse, Peter J. Fleming, Carlos M. Fonseca, Salvatore Greco and Jane Shaw (editors), Evolutionary Multi-Criterion Optimization, 7th International Conference, EMO 2013, pp. 352--366, Springer. Lecture Notes in Computer Science Vol. 7811, Sheffield, UK, March 19-22, 2013.
  664. E. Mokotoff. Multi-objective Simulated Annealing for Permutation Flow Shop Problems, in Uday K. Chakraborty (editor), Computational Intelligence in Flow Shop and Job Shop Scheduling, pp. 101--150, Springer, Studies in Computational Intelligence Vol. 230, Berlin, Germany, 2009, ISBN 978-3-642-02835-9.
  665. Sìlvia M.D. Monteiro, Elizabeth F.G. Goldbarg and Marco C. Goldbarg. A Plasmid Based Transgenetic Algorithm for the Biobjective Minimum Spanning Tree Problem. in Carlos Cotta and Peter Cowling, (editors), Evolutionary Computation in Combinatorial Optimization. 9th European Conference, EvoCOP 2009, pp. 49--60, Springer. Lecture Notes in Computer Science, Vol. 5482, Tübigen, Germany, April 2009.
  666. Jerzy Montusiewicz. Ranking Pareto Optimal Solutions in Genetic Algorithm by Using the Undifferentiation Interval Method, in Tadeusz Burczyski and Andrzej Osyczka (editors), IUTAM Symposium on Evolutionary Methods in Mechanics, pp. 265--276, Kluwer Academic Publishers, Dordrecht/Boston/London, 2004, ISBN 1-4020-2266-2.
  667. Jason H. Moore and Bill C. White. Genome-Wide Genetic Analysis using Genetic Programming: The Critical Need for Expert Knowledge, in Rick Riolo, Terence Soule and Bill Worzel (editors), Genetic Programming Theory and Practice IV, pp. 11--28, Springer, New York, USA, 2007.
  668. Antonio Miguel Mora, Juan Julián Merelo Guervós, Cristian Millán, Juan Torrecillas, Juan Luís Jiménez Laredo and Pedro A. Castillo Valdivieso. Comparing ACO Algorithms for Solving the Bi-criteria Military Path-Finding Problem, in Fernando Almeida. Costa, Luis Mateus Rocha, Ernesto Costa, Inman Harvey, and António Coutinho (editors), Advances in Artificial Life. 9th European Conference (ECAL'2007), pp. 665-674, Springer, Lecture Notes in Computer Science, Vol. 4648, Lisbon, Portugal, September 10-14 2007. ISBN 978-3-540-74912-7.
  669. A.M. Mora, J.J. Merelo, J.L.J. Laredo, P.A. Castillo, P.G. Sánchez, J.P. Sevilla, C. Millán and J. Torrecillas. hCHAC-4, an ACO Algorithm for Solving the Four-Criteria Military Path-finding Problem, in Natalio Krasnogor, Giuseppe Nicosia, Mario Pavone and David Pelta (editors), Nature Inspired Cooperative Strategies for Optimization, pp. 73--84, Springer, Berlin, 2008, ISBN 978-3-540-78986-4 .
  670. A.M. Mora, J.J. Merelo, P.A. Castillo, J.L.J. Laredo, P. García-Sánchez and M.G. Arenas. Studying the Influence of the Objective Balancing Parameter in the Performance of a Multi-Objective Ant Colony Optimization Algorithm, in Juan R. González, David Alejandro Pelta, Carlos Cruz, Germán Terrazas and Natalio Krasnogor (editors), Nature Inspired Cooperative Strategies for Optimization (NICSO 2010), pp. 163--176, Springer-Verlag, Berlin Heidelberg, 2010, ISBN 978-3-642-12537-9.
  671. Hiroyuki Morino and Shigeru Obayashi. Knowledge Extraction for Structural Design of Regional Jet Horizontal Tail Using Multi-Objective Design Exploration (MODE), in Robin C. Purshouse, Peter J. Fleming, Carlos M. Fonseca, Salvatore Greco and Jane Shaw (editors), Evolutionary Multi-Criterion Optimization, 7th International Conference, EMO 2013, pp. 656--668, Springer. Lecture Notes in Computer Science Vol. 7811, Sheffield, UK, March 19-22, 2013.
  672. Amiram Moshaiov. Multi-competence Cybernetics: The Study of Multiobjective Artificial Systems and Multi-fitness Natural Systems , in Joshua Knowles, David Corne and Kalyanmoy Deb (Editors), Multi-Objective Problem Solving from Nature: From Concepts to Applications, pp. 285--304, Springer, Berlin, 2008, ISBN 978-3-540-72963-1.
  673. Amiram Moshaiov and Michael Zadok. Evolving Counter-Propagation Neuro-controllers for Multi-objective Robot Navigation, in Anna I. Esparcia-Alcázar et al. (editors), Applications of Evolutionary Computation, 16th European Conference, EvoApplications 2013, pp. 589--598, Springer. Lecture Notes in Computer Science Vol. 7835, Vienna, Austria, April 3-5, 2013.
  674. Sanaz Mostaghim and Jürgen Teich. Quad-trees: A Data Structure for Storing Pareto Sets in Multiobjective Evolutionary Algorithms with Elitism, in Ajith Abraham, Lakhmi Jain and Robert Goldberg (editors), Evolutionary Multiobjective Optimization. Theoretical Advances and Applications, pp. 81--104, Springer, USA, 2005.
  675. Sanaz Mostaghim, Werner Halter and Anja Wille. Linear Multi-Objective Particle Swarm Optimization, in Ajith Abraham, Crina Grosan and Vitorino Ramos (editors), Stigmergic Optimization, pp. 209--328, Springer, Studies in Computational Intelligence Vol. 31, 2006.
  676. Sanaz Mostaghim and Hartmut Schmeck. Distance Based Ranking in Many-Objective Particle Swarm Optimization, in Günter Rudolph, Thomas Jansen, Simon Lucas, Carlo Poloni and Nicola Beume (editors), Parallel Problem Solving from Nature--PPSN X, pp. 753--762, Springer, Lecture Notes in Computer Science Vol. 5199, Dortmund, Germany, September 2008.
  677. Sanaz Mostaghim, Heike Trautmann and Olaf Mersmann. Preference-Based Multi-Objective Particle Swarm Optimization Using Desirabilities. in Robert Schaefer, Carlos Cotta, Joanna Kolodziej, and Günter Rudolph (editors), Parallel Problem Solving from Nature--PPSN XI, 11th International Conference, Proceedings, Part II, pp. 101--110, Springer, Lecture Notes in Computer Science Vol. 6239, Kraków, Poland, September, 2010.
  678. Sanaz Mostaghim. Parallel Multi-objective Optimization Using Self-organized Heterogeneous Resources, in Francisco Fernández de Vega and Erick Cantú-Paz (editors), Parallel and Distributed Computational Intelligence, pp. 165--179, Springer, Berlin, Germany, 2010.
  679. Noura Al Moubayed, Andrei Petrovski and John McCall. A Novel Smart Multi-Objective Particle Swarm Optimisation Using Decomposition. in Robert Schaefer, Carlos Cotta, Joanna Kolodziej, and Günter Rudolph, (editors), Parallel Problem Solving from Nature--PPSN XI, 11th International Conference, Proceedings, Part II, pp. 1--10, Springer, Lecture Notes in Computer Science Vol. 6239, Kraków, Poland, September, 2010.
  680. Noura Al Moubayed, Andrei Petrovski and John McCall. Clustering-Based Leaders' Selection in Multi-Objective Particle Swarm Optimisation, in Hujun Yin, Wenjia Wang and Victor Rayward-Smith (editors), Intelligent Data Engineering and Automated Learning-IDEAL 2011, 12th International Conference, pp. 99--106, Springer. Lecture Notes in Computer Science Vol. 6936, Norwich, UK, September 7-9, 2011.
  681. Ana Moura. A Multi-Objective Genetic Algorithm for the Vehicle Routing with Time Windows and Loading Problem, in A. Bortfeldt, J. Homberger, H. Kopfer, G. Pankratz and R. Strangmeier (editors), Intelligent Decision Support - Current Challenges and Approaches, pp. 187--201, Gabler Edition Wissenschaft, Weisbaden, 2008.
  682. Jean-Baptiste Mouret and Stéphane Doncieux. Incremental Evolution of Animats' Behaviors as. Multi-objective Optimization, in Minoru Asada, John C. T. Hallam, Jean-Arcady Meyer and Jun Tani (editors), From Animals to Animats 10, 10th International Conference on Simulation of Adaptive Behavior (SAB 2008), pp. 210-219, Springer, Lecture Notes in Computer Science, Vol. 5040, Osaka, Japan, July 7-12 2008. ISBN 978-3-540-69133-4.
  683. Ernest Muthomi Mugambi and Andrew Hunter. Multi-objective Genetic Programming Optimization of Decision Trees for Classifying Medical Data, in Vasile Palade, Robert J. Howlett and Lakhmi Jain (editors), Knowledge-Based Intelligent Information and Engineering Systems, 7th International Conference, KES 2003, pp. 293--299, Springer. Lecture Notes in Artificial Intelligence Vol. 2773, Oxford, UK, September 2003.
  684. H. Müller, D. Biermann, P. Kersting, T. Michelitsch, C. Begau, C. Heuel, R. Joliet, J. Kolanski, M. Kröller, C. Moritz, D. Niggemann, M. Stöber, T. Stönner, J. Varwig and D. Zhai. Intuitive Visualization and Interactive Analysis of Pareto Sets Applied on Production Engineering Systems, in Ang Yang, Yin Shan and Lam Thu Bui (editors), Success in Evolutionary Computation, pp. 189--214, Springer, Studies in Computational Intelligence Vol. 92, 2008.
  685. Christine L. Mumford-Valenzuela. A Simple Approach to Evolutionary Multiobjective Optimization, in Ajith Abraham, Lakhmi Jain and Robert Goldberg (editors), Evolutionary Multiobjective Optimization. Theoretical Advances and Applications, pp. 55--79, Springer, USA, 2005.
  686. Angel Muñoz-Zavala, Arturo Hernández-Aguirre and Enrique Villa-Diharce. Particle Evolutionary Swarm Multi-Objective Optimization for Vehicle Routing Problem with Time Windows. in Carlos Artemio Coello Coello, Satchidananda Dehuri, and Susmita Ghosh, (editors), Swarm Intelligence for Multi-objective Problems in Data Mining, chapter 10, pp. 233--257, Springer. Studies in Computational Intelligence. Vol. 242, Berlin, 2009.
  687. Tadahiko Murata, Hisao Ishibuchi and Mitsuo Gen. Specification of Genetic Search Directions in Cellular Multi-objective Genetic Algorithms. In Eckart Zitzler, Kalyanmoy Deb, Lothar Thiele, Carlos A. Coello Coello and David Corne, editors, First International Conference on Evolutionary Multi-Criterion Optimization, pages 82-95. Springer-Verlag. Lecture Notes in Computer Science No. 1993, 2001.
  688. Tadahiko Murata and Shiori Kaige and Hisao Ishibuchi. Local Search Direction for Multi-Objective Optimization Using Memetic EMO Algorithms, in Yaochu Jin (editor), Knowledge Incorporation in Evolutionary Computation, Springer, pp. 385--410, Berlin Heidelberg, 2005, ISBN 3-540-22902-7 .
  689. Tadahiko Murata and Akinori Taki. Many-Objective Optimization for Knapsack Problems Using Correlation-Based Weighted Sum Approach, in Matthias Ehrgott, Carlos M. Fonseca, Xavier Gandibleux, Jin-Kao Hao and Marc Sevaux (editors), Evolutionary Multi-Criterion Optimization. 5th International Conference, EMO 2009, pp. 468--480, Springer. Lecture Notes in Computer Science Vol. 5467, Nantes, France, April 2009.
  690. M. Narasimha Murty, Babaria Rashmin and Chiranjib Bhattacharyya. Clustering Based on Genetic Algorithms, in Ashish Ghosh, Satchidananda Dehuri and Susmita Ghosh, editors, Multi-objective Evolutionary Algorithms for Knowledge Discovery from Data Bases, pp. 137--159, Springer, Berlin, 2008, ISBN 978-3-540-77466-2 .
  691. Marco Mussetta, Paola Pirinoli, Stefano Selleri and Riccardo E. Zich. Meta-PSO for Multi-Objective EM Problems. in Nadia Nedjah, Leandro dos Santos Coelho, and Luiza de Macedo de Mourelle, (editors), Multi-Objective Swarm Intelligent Systems. Theory & Experiences, chapter 6, pp. 125--150, Springer, Studies in Computational Intelligence, Vol. 261, Berlin, Germany, 2010. ISBN 978-3-642-05164-7.
  692. N

  693. P.K.S. Nain, J.M. Giri and S. Sharma and K. Deb. Multi-Objective Performance Optimization of Thermo-electric Coolers Using Dimensional Structural Parameters, in Bijaya Ketan Panigrahi, Swagatam Das, Ponnuthurai Nagaratnam Suganthan and Subhransu Sekhar Dash (editors), Swarm, Evolutionary, and Memetic Computing, First International Conference on Swarm, Evolutionary and Memetic Computing, SEMCCO 2010, pp. 607--614, Springer-Verlag. Lecture Notes in Computer Science Vol. 6466, Chennai, India, December 16-18, 2010.
  694. Md. Nasir, Soumyadip Sengupta and Swagatam Das. Efficient Design of Cosine-Modulated Filter Banks Using Evolutionary Multi-objective Optimization, in Bijaya Ketan Panigrahi, Swagatam Das, Ponnuthurai Nagaratnam Suganthan and Pradipta Kumar Nanda (editors), Swarm, Evolutionary, and Memetic Computing, Third International Conference, SEMCCO 2012, pp. 785--792, Springer. Lecture Notes in Computer Science Vol. 7677, Bhubaneswar, India, December 20-22, 2012.
  695. Hirotaka Nakayama, Masao Arakawa and Ye Boon Yu. Data Envelopment Analysis in Multicriteria Decision Making, in Matthias Ehrgott and Xavier Gandibleux (editors), Multiple Criteria Optimization: State of the Art Annotated Bibliographic Surveys, pp. 333--368, Kluwer Academic Publishers, Boston, 2002.
  696. Hirotaka Nakayama and Yeboon Yun. Generating Support Vector Machines Using Multi-Objective Optimization and Goal Programming, in Yaochu Jin (Editor), Multi-Objective Machine Learning, pp. 173--198, Springer. Studies in Computational Intelligence, Volume 16, Berlin, 2006.
  697. Hirotaka Nakayama, Yeboon Yun and Masakazu Shirakawa. Multi-objective Model Predictive Control Using Computational Intelligence. in Yoel Tenne and Chi-Keong Goh, (editors), Computational Intelligence in Expensive Optimization Problems, pp. 249--264, Springer, Berlin, Germany, 2010. ISBN 978-3-642-10700-9.
  698. Jin-Wu Nam, In-Hee Lee, Kyu-Baek Hwang, Seong-Bae Park and Byoung-Tak Zhang. Dinucleotide Step Parameterization of Pre-miRNAs Using Multi-objective Evolutionary Algorithms, in Elena Marchiori, Jason H. Moore and Jagath C. Rajapakse (editors), Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics, 5th European Conference, EvoBIO 2007, pp. 176--186, Springer. Lecture Notes in Computer Science Vol. 4447, Valencia, Spain, April 2007.
  699. Nikolaos Nanas and Anne De Roeck. Multimodal Dynamic Optimization: From Evolutionary Algorithms to Artificial Immune Systems, in Leandro Nunes de Castro and Fernando José Von Zuben and Helder Knidel (editors), Artificial Immune Systems, 6th International Conference, ICARIS 2007, pp. 13--24, Springer. Lecture Notes in Computer Science Vol. 4628, Santos, Brazil, August 2007.
  700. Yousef Naranjani, Carlos Hernández, Fu-Rui Xiong, Oliver Schütze and Jian-Qiao Sun. A Hybrid Algorithm for the Simple Cell Mapping Method in Multi-objective Optimization, in Michael Emmerich, André Deutz, Oliver Schütze, Thomas Bäck, Emilia Tantar, Alexandru-Adrian Tantar, Pierre del Moral, Pierrick Legrand, Pascal Bouvry and Carlos Coello Coello (editors), EVOLVE - A Bridge between Probability, Set Oriented Numerics, and Evolutionary Computation IV, pp. 207--223, Springer, Advances in Intelligent Systems and Computing Vol. 227, Heidelberg, Germany, July 10-13, 2013, ISBN 978-3-319-01127-7.
  701. Kaname Narukawa. Effect of Dominance Balance in Many-Objective Optimization, in Robin C. Purshouse, Peter J. Fleming, Carlos M. Fonseca, Salvatore Greco and Jane Shaw (editors), Evolutionary Multi-Criterion Optimization, 7th International Conference, EMO 2013, pp. 276--290, Springer. Lecture Notes in Computer Science Vol. 7811, Sheffield, UK, March 19-22, 2013.
  702. A.J. Nebro, F. Luna, E.-G. Talbi and E. Alba. Parallel Multiobjective Optimization, in Enrique Alba (editor), Parallel Metaheuristics, pp. 371--394, Wiley-Interscience, New Jersey, USA, 2005, ISBN 13-978-0-471-67806-9.
  703. A. J. Nebro, J. J. Durillo, C. A. Coello Coello, F. Luna and E. Alba. A Study of Convergence Speed in Multi-Objective Metaheuristics, in Günter Rudolph, Thomas Jansen, Simon Lucas, Carlo Poloni and Nicola Beume (editors), Parallel Problem Solving from Nature--PPSN X, pp. 763--772, Springer, Lecture Notes in Computer Science Vol. 5199, Dortmund, Germany, September 2008.
  704. Antonio J. Nebro and Juan J. Durillo. On the Effect of Applying a Steady-State Selection Scheme in the Multi-Objective Genetic Algorithm NSGA-II, in Raymond Chiong (Editor), Nature-Inspired Algorithms for Optimisation, pp. 435--456, Springer, Berlin, ISBN 978-3-642-00266-3, 2009.
  705. A.J. Nebro, J.J. Durillo, F. Luna and E. Alba. Evaluating New Advanced Multiobjective Metaheuristics, in Enrique Alba, Christian Blum, Pedro Isasi, Coromoto León and Juan Antonio Gómez (editors), Optimization Techniques for Solving Complex Problems, Chapter 5, pp. 63--82, Wiley, New Jersey, USA, 2009, ISBN 978-0-470--29332-4.
  706. Antonio J. Nebro, Juan J. Durillo, Mirialys Machín, Carlos A. Coello Coello and Bernabé Dorronsoro. A Study of the Combination of Variation Operators in the NSGA-II Algorithm, in Concha Bielza, Antonio Salmerón, Amparo Alonso-Betanzos, J. Ignacio Hidalgo, Luis Martínez, Alicia Troncoso, Emilio Corchado and Juan M. Corchado (editors), Advances in Artificial Intelligence, 15th Conference of the Spanish Association for Artificial Intelligence, CAEPIA 2013, pp. 269--278, Springer. Lecture Notes in Artificial Intelligence Vol. 8109, Madrid, Spain, September 17-20, 2013.
  707. Nadia Nedjah and Luiza de Macedo Mourelle. Evolutionary Multi-Objective Optimisation: A Review, in Nadia Nedjah and Luiza de Macedo Mourelle (editors), Real-World Multi-Objective System Engineering, pp. 3--27, Nova Science Publishers, New York, 2005.
  708. Craig Neufeld, Brian J. Ross and William Ralph. The Evolution of Artistic Filters, in Juan Romero and Penousal Machado (editors), The Art of Artificial Evolution, A Handbook on Evolutionary Art and Music, Chapter 16, pp. 335--356, Springer. Natural Computing Series, Heidelberg, Germany, 2008, ISBN 978-3-540-72876-4.
  709. Frank Neumann and Ingo Wegener. Can Single-Objective Optimization Profit from Multiobjective Optimization , in Joshua Knowles, David Corne and Kalyanmoy Deb (Editors), Multi-Objective Problem Solving from Nature: From Concepts to Applications, pp. 115--130, Springer, Berlin, 2008, ISBN 978-3-540-72963-1.
  710. Frank Neumann and Joachim Reichel. Approximating Minimum Multicuts by Evolutionary Multi-objective Algorithms, in Günter Rudolph, Thomas Jansen, Simon Lucas, Carlo Poloni and Nicola Beume (editors), Parallel Problem Solving from Nature--PPSN X, pp. 72--81, Springer, Lecture Notes in Computer Science Vol. 5199, Dortmund, Germany, September 2008.
  711. Frank Neumann and Madeleine Theile. How Crossover Speeds Up Evolutionary Algorithms for the Multi-criteria All-Pairs-Shortest-Path Problem. in Robert Schaefer, Carlos Cotta, Joanna Kolodziej and Günter Rudolph, (editors), Parallel Problem Solving from Nature--PPSN XI, 11th International Conference, Proceedings, Part I, pp. 667--676, Springer, Lecture Notes in Computer Science Vol. 6238, Kraków, Poland, September, 2010.
  712. Amos H.C. Ng, Catarina Dudas, Johannes Nießen and Kalyanmoy Deb. Simulation-Based Innovization Using Data Mining for Production Systems Analysis, in Lihui Wang, Amos H. C. Ng and Kalyanmoy Deb (editors), Multi-objective Evolutionary Optimisation for Product Design and Manufacturing, Chapter 15, pp. 401--429, Springer, London, UK, 2011, ISBN 978-0-85729-617-7.
  713. Patrick N. Ngatchou, Anahita Zarei, Warren L. J. Fox and Mohamed A. El-Sharkawi. Pareto Multiobjective Optimization. In Kwang Y. Lee and Mohamed A. El-Sharkawi, (editors), Modern Heuristic Optimization Techniques. Theory and Applications to Power Systems, chapter 10, pp. 189--207. Wiley-Interscience, USA, 2008.
  714. Su Nguyen, Mengjie Zhang, Mark Johnston and Kay Chen Tan. Learning Reusable Initial Solutions for Multi-objective Order Acceptance and Scheduling Problems with Genetic Programming, in Krzysztof Krawiec, Alberto Moraglio, Ting Hu, A. Sima Etaner-Uyar and Bin Hu (editors), Genetic Programming, 16th European Conference, EuroGP 2013, pp. 157--168, Springer. Lecture Notes in Computer Science Vol. 7831, Vienna, Austria, April 3-5, 2013.
  715. Anh Nguyen, Tommaso Urli and Markus Wagner. Single- and Multi-Objective Genetic Programming: New Bounds for Weighted ORDER and MAJORITY, in Frank Neumann and Kenneth De Jong (editors), Proceedings of the 2013 ACM Workshop on Foundations of Genetic Algorithms (FOGA XII), pp. 161--172, ACM Press, Adelaide, Australia, January 16-20, 2013.
  716. Matteo Nicolini. Evaluating Performance of Multi-Objective Genetic Algorithms for Water Distribution System Optimization, in Liong et al. (editors), Hydroinformatics, pp. 850--857, World Scientific, 2004.
  717. Li Nie, Liang Gao, Peigen Li and Xiaojuan Wang. Multi-Objective Optimization for Dynamic Single-Machine Scheduling, in Ying Tan, Yuhui Shi, Yi Chai and Guoyin Wang (editors), Advances in Swarm Intelligence, Second International Conference, ICSI 2011, pp. 1--9, Springer. Lecture Notes in Computer Science Vol. 6729, Chongqing, China, June 12-15, 2011.
  718. C. Nithya, J. Preetha Roselyn, D. Devaraj and Subhransu Sekhar Dash. Voltage Stability Constrained Optimal Power Flow Using Non-dominated Sorting Genetic Algorithm-II (NSGA II), in Bijaya Ketan Panigrahi, Swagatam Das, Ponnuthurai Nagaratnam Suganthan and Pradipta Kumar Nanda (editors), Swarm, Evolutionary, and Memetic Computing, Third International Conference, SEMCCO 2012, pp. 793--801, Springer. Lecture Notes in Computer Science Vol. 7677, Bhubaneswar, India, December 20-22, 2012.
  719. Yifeng Niu and Lincheng Shen. An Adaptive Multi-objective Particle Swarm Optimization for Color Image Fusion, in Tzai-Der Wang, Xiaodong Li, Shu-Heng Chen, Xufa Wang, Hussein Abbass, Hitoshi Iba, Guoliang Chen and Xin Yao (editors), Simulated Evolution and Learning, 6th International Conference, SEAL 2006, pp. 473--480, Springer. Lecture Notes in Computer Science Vol. 4247, Hefei, China, October 2006.
  720. Yifeng Niu, Lincheng Shen and Yanlong Bu. Multi-objective blind image fusion, in Rough Sets and Knowledge Technology, Springer. Lecture Notes in Artificial Intelligence Vol. 4062, pp. 713--720, 2006.
  721. Yifeng Niu, Lincheng Shen, Xiaohua Huo and Guangxia Liang. Multi-Objective Wavelet-Based Pixel-Level Image Fusion Using Multi-Objective Constriction Particle Swarm Optimization. in Nadia Nedjah, Leandro dos Santos Coelho, and Luiza de Macedo de Mourelle, (editors), Multi-Objective Swarm Intelligent Systems. Theory & Experiences, chapter 7, pp. 151--178, Springer, Studies in Computational Intelligence, Vol. 261, Berlin, Germany, 2010. ISBN 978-3-642-05164-7.
  722. Yusuke Nojima and Hisao Ishibuchi. Effects of Diversity Measures on the Design of Ensemble Classifiers by Multiobjective Genetic Fuzzy Rule Selection with a Multi-classifier Coding Scheme, in Emilio Corchado, Ajith Abraham and Witold Pedrycz (editors), Hybrid Artificial Intelligence Systems. Third International Workshop (HAIS'2008), pp. 755-763, Springer, Lecture Notes in Computer Science, Vol. 5271, Burgos, Spain, September 24-26, 2008, ISBN 978-3-540-87655-7.
  723. Pamela C. Nolz, Karl F. Doerner, Walter J. Gutjahr and Richard F. Hartl. A Bi-Objective Metaheuristic for Disaster Relief Operation Planning. in Carlos A. Coello Coello, Clarisse Dhaenens and Laetitia Jourdan, (editors), Advances in Multi-Objective Nature Inspired Computing, chapter 8, pp. 167--187, Springer, Studies in Computational Intelligence, Vol. 272, Berlin, Germany, 2010, ISBN 978-3-642-11217-1.
  724. Nikita Noskov, Evert Haasdijk, Berend Weel and A. E. Eiben. MONEE: Using Parental Investment to Combine Open-Ended and Task-Driven Evolution, in Anna I. Esparcia-Alcázar et al. (editors), Applications of Evolutionary Computation, 16th European Conference, EvoApplications 2013, pp. 569--578, Springer. Lecture Notes in Computer Science Vol. 7835, Vienna, Austria, April 3-5, 2013.
  725. O

  726. S. Obayashi. Aerodynamic inverse optimisation problems, in A.M.S. Zalzala and P.J. Fleming (editors), Genetic Algorithms in Engineering Systems, Chapter 9, pp. 203--228, The Institution of Electrical Engineers. Control Engineering Series 55, Bath, UK, 1997.
  727. Shigeru Obayashi. Pareto Genetic Algorithm for Aerodynamic Design using the Navier-Stokes Equations. In D. Quagliarella, J. Périaux, C. Poloni and G. Winter, editors, Genetic Algorithms and Evolution Strategies in Engineering and Computer Science. Recent Advances and Industrial Applications, chapter 12, pages 245-266. John Wiley & Sons, Chichester, UK, 1998.
  728. Shigeru Obayashi and Daisuke Sasaki. Multiobjective Aerodynamic Design and Visualization of Supersonic Wings by Using Adaptive Range Multiobjective Genetic Algorithms, in Carlos A. Coello Coello and Gary B. Lamont (editors), Applications of Multi-Objective Evolutionary Algorithms, pp. 295--315, World Scientific, Singapore, 2004.
  729. Tatsuya Okabe, Yaochu Jin and Bernhard Sendhoff. Combination of Genetic Algorithms and Evolution Strategies with Self-adaptive Switching, in Chi-Keong Goh, Yew-Soon Ong, and Kay Chen Tan (editors), Multi-Objective Memetic Algorithms, chapter 13, pp. 281--307, Springer, Studies in Computational Intelligence, Vol. 171, Berlin, Germany, 2009. ISBN 978-3-540-88050-9.
  730. Luiz S. Oliveira, Marisa Morita and Robert Sabourin. Feature Selection for Ensembles Using the Multi-Objective Optimization Approach, in Yaochu Jin (Editor), Multi-Objective Machine Learning, pp. 49--74, Springer. Studies in Computational Intelligence, Volume 16, Berlin, 2006.
  731. Eunice Oliveira and Carlos Henggeler Antunes. An Evolutionary Algorithm Guided by Preferences Elicited According to the ELECTRE TRI Method Principles. in Peter Cowling and Peter Merz, (editors), Evolutionary Computation in Combinatorial Optimization. 10th European Conference, EvoCOP 2010, pp. 214--225, Springer. Lecture Notes in Computer Science, Vol. 6022, Istanbul, Turkey, April, 2010.
  732. John M. Oliver, Timoleon Kipouros and A. Mark Savill. A Self-adaptive Genetic Algorithm Applied to Multi-Objective Optimization of an Airfoil, in Michael Emmerich, André Deutz, Oliver Schütze, Thomas Bäck, Emilia Tantar, Alexandru-Adrian Tantar, Pierre del Moral, Pierrick Legrand, Pascal Bouvry and Carlos Coello Coello (editors), EVOLVE - A Bridge between Probability, Set Oriented Numerics, and Evolutionary Computation IV, pp. 261--276, Springer, Advances in Intelligent Systems and Computing Vol. 227, Heidelberg, Germany, July 10-13, 2013, ISBN 978-3-319-01127-7.
  733. Oluwatosin Olofintoye, Josiah Adeyemo and Fred Otieno. A Combined Pareto Differential Evolution Approach for Multi-objective Optimization, in Oliver Schütze, Carlos A. Coello Coello, Alexandru-Adrian Tantar, Emilia Tantar, Pascal Bouvry, Pierre Del Moral and Pierrick Legrand (editors), EVOLVE - A Bridge between Probability, Set Oriented Numerics, and Evolutionary Computation III, pp. 213--231, Springer. Studies in Computational Intelligence Vol. 500, Heidelberg, Germany, 2014, ISBN 978-3-319-01459-3 .
  734. Johan Ölvander, Mehdi Tarkian and Xiaolong Feng. Multi-objective Optimisation of a Family of Industrial Robots, in Lihui Wang, Amos H. C. Ng and Kalyanmoy Deb (editors), Multi-objective Evolutionary Optimisation for Product Design and Manufacturing, Chapter 6, pp. 189--217, Springer, London, UK, 2011, ISBN 978-0-85729-617-7.
  735. Mahamed G. Omran andreis P. Engelbrecht and Ayed Salman. Image Classification Using Particle Swarm Optimization, in Kay Chen Tan, Meng Hiot Lim, Xin Yao and Lipo Wang, (editors), Recent Advances in Simulated Evolution and Learning, pp. 347-365, World Scientific, Singapore, 2004.
  736. Lisa Osadciw, Nisha Srinivas and Kalyan Veeramachaneni. Combining Correlated Data from Multiple Classifiers. in Carlos Artemio Coello Coello, Satchidananda Dehuri, and Susmita Ghosh, (editors), Swarm Intelligence for Multi-objective Problems in Data Mining, chapter 11, pp. 259--281, Springer. Studies in Computational Intelligence. Vol. 242, Berlin, 2009.
  737. Andrzej Osyczka and Stanislaw Krenich. Evolutionary Algorithms for Multicriteria Optimization with Selecting a Representative Subset of Pareto Optimal Solutions. In Eckart Zitzler, Kalyanmoy Deb, Lothar Thiele, Carlos A. Coello Coello and David Corne, editors, First International Conference on Evolutionary Multi-Criterion Optimization, pages 141-153. Springer-Verlag. Lecture Notes in Computer Science No. 1993, 2001.
  738. Mariusz Oszust and Marian Wysocki. Determining Subunits for Sign Language Recognition by Evolutionary Cluster-Based Segmentation of Time Series, in Leszek Rutkowski, Rafal Scherer, Ryszard Tadeusiewicz, Lotfi A. Zadeh and Jacek M. Zurada (editors), Artifical Intelligence and Soft Computing, 10th International Conference, ICAISC 2010, pp. 189--196, Springer. Lecture Notes in Artificial Intelligence Vol. 6114, Zakopane, Poland, June 13-17, 2010, ISBN 978-3-642-13231-5.
  739. Tansel Özyer, Reda Alhajj and Ken Barker. Clustering by Integrating Multi-objective Optimization with Weighted K-Means and Validity Analysis, in Emilio Corchado, Hujun Yin, Vicente J. Botti and Colin Fyfe (editors), Intelligent Data Engineering and Automated Learning - IDEAL 2006, 7th International Conference, pp. 454-463, Springer, Lecture Notes in Computer Science Vol. 4224, Burgos, Spain, September 20-23 2006.
  740. P

  741. Nikhil Padhye and Kalyanmoy Deb. Multi-objective Optimisation and Multi-criteria Decision Making for FDM Using Evolutionary Approaches, in Lihui Wang, Amos H. C. Ng and Kalyanmoy Deb (editors), Multi-objective Evolutionary Optimisation for Product Design and Manufacturing, Chapter 7, pp. 219--247, Springer, London, UK, 2011, ISBN 978-0-85729-617-7.
  742. Selcen Pamuk and Murat Köksalan. An interactive genetic algorithm applied to the multiobjective knapsack problem, in Murat Köksalan and Stanley Zionts (editors), Multiple Criteria Decision Making in the New Millennium, Proceedings of the Fifteenth International Conference on Multiple Criteria Decision Making (MCDM'2000), pp. 265-272, Springer. Lecture Notes In Economics And Mathematical Systems Vol. 507, Ankara, Turkey, July 10-14, 2001.
  743. Gregor Papa, Tomasz Garbolino and Franc Novak. Deterministic Test Pattern Generator Design, in Mario Giacobini et al. (editors), Applications of Evolutionary Computing. EvoWorkshops 2008: EvoCOMNET, EvoFIN, EvoHOT, EvoIASP, EvoMUSART, EvoNUM, EvoSTOC and EvoTransLog, pp. 204-213, Springer, Lecture Notes in Computer Science Vol. 4974, Naples, Italy, March 2008.
  744. Gisele L. Pappa, Alex A. Freitas and Celso A.A. Kaestner. Multi-Objective Algorithms for Attribute Selection in Data Mining, in Carlos A. Coello Coello and Gary B. Lamont (editors), Applications of Multi-Objective Evolutionary Algorithms, pp. 603--626, World Scientific, Singapore, 2004.
  745. Luís F. Paquete and Carlos M. Fonseca. A Study of Examination Timetabling with Multiobjective Evolutionary Algorithms, in Jorge Pinho de Sousa (Editor), Proceedings of the 4th Metaheuristics International Conference (MIC'2001), pp. 149--153, Porto, Portugal, Program Operational Ciencia, Tecnologia, Inovaçao do Quadro Comunitário de Apoio III de Fundaçao para a Ciencia e Tecnologia, July 2001
  746. Luís Paquete, Thomas Stützle and Manuel López-Ibáñez. Using Experimental Design to Analyze Stochastic Local Search Algorithms for Multiobjective Problems, in Springer US (editor), Metaheuristics. Progress in Complex Systems Optimization, pp. 325-344, Springer, Operations Research/Computer Science Interfaces Series, Vol. 39, 2007. ISBN 978-0-387-71919-1.
  747. Luís Paquete and Thomas Stützle. Stochastic Local Search Algorithms for Multiobjective Combinatorial Optimization: A Review, in Teofilo F. Gonzalez (editor), Handbook of Approximation Algorithms and Metaheuristics, Chapter 29, pp. 29-1--29-15, Chapman & Hall/CRC, 2007, ISBN 978-1-58488-550-4.
  748. Luís Paquete and Thomas Stützle. Clusters of Non-dominated Solutions in Multiobjective Combinatorial Optimization: An Experimental Analysis, in Vincent Barichard, Matthias Ehrgott, Xavier Gandibleux and Vincent T'Kindt (editors), Multiobjective Programming and Goal Programming. Theoretical Results and Practical Applications, pp. 69-77, Springer, Lecture Notes in Economics and Mathematical Systems, Vol. 618, 2009. ISBN 978-3-540-85645-0.
  749. Luís Paquete and Thomas Stützle. On the Performance of Local Search for the Biobjective Traveling Salesman Problem. in Carlos A. Coello Coello, Clarisse Dhaenens and Laetitia Jourdan, (editors), Advances in Multi-Objective Nature Inspired Computing, chapter 7, pp. 143--165, Springer, Studies in Computational Intelligence, Vol. 272, Berlin, Germany, 2010, ISBN 978-3-642-11217-1 ..
  750. I.C. Parmee. Poor-Definition, Uncertainty and Human Factors--Satisfying Multiple Objectives in Real-World Decision-Making Environments. In Eckart Zitzler, Kalyanmoy Deb, Lothar Thiele, Carlos A. Coello Coello and David Corne, editors, First International Conference on Evolutionary Multi-Criterion Optimization, pages 67-81. Springer-Verlag. Lecture Notes in Computer Science No. 1993, 2001.
  751. Ian C. Parmee and Johnson A. Abraham. Interactive Evolutionary Design, in Yaochu Jin (editor), Knowledge Incorporation in Evolutionary Computation, Springer, pp. 435--458, Berlin Heidelberg, 2005, ISBN 3-540-22902-7 .
  752. I. C. Parmee, J. R. Abraham and A. Machwe. Human-Centric Evolutionary Systems in Design and Decision-Making, in Jean-Philippe Rennard (editor), Handbook of Research on Nature Inspired Computing for Economy and Management, pp. 395--411, Vol. II, Idea Group Reference, Hershey, UK, 2006, ISBN 1-59140-984-5.
  753. Ian C. Parmee, Johnson A.R. Abraham and Azahar Machwe. User-Centric Evolutionary Computing: Melding Human and Machine Capability to Satisfy Multiple Criteria, in Joshua Knowles, David Corne and Kalyanmoy Deb (Editors), Multi-Objective Problem Solving from Nature: From Concepts to Applications, pp. 263--283, Springer, Berlin, 2008, ISBN 978-3-540-72963-1 .
  754. Roberta O. Parreiras and João A. Vasconcelos. Decision Making in Multiobjective Optimization Problems, in Nadia Nedjah and Luiza de Macedo Mourelle (editors), Real-World Multi-Objective System Engineering, pp. 29--52, Nova Science Publishers, New York, 2005.
  755. Konstantinos E. Parsopoulos and Michael N. Vrahatis. Multi-Objective Particles Swarm Optimization Approaches, in Lam Thu Bui and Sameer Alam (editors), Multi-Objective Optimization in Computational Intelligence: Theory and Practice, pp. 20--42, Information Science Reference, Hershey, PA, USA, 2008, ISBN 978-1-59904-498-9.
  756. Joseph M. Pasia, Richard F. Hartl and Karl F. Doerner. Solving a Bi-objective Flowshop Scheduling Problem by Pareto-Ant Colony Optimization, in Marco Dorigo, Luca Maria Gambardella, Mauro Birattari, Alcherio Martinoli, Riccardo Poli and Thomas Stützle (editors), Ant Colony Optimization and Swarm Intelligence. 5th International Workshop, ANTS 2006, Springer, pp. 294--305, Lecture Notes in Computer Science Vol. 4150, Brussels, Belgium, September 2006.
  757. Joseph M. Pasia, Hernán Aguirre and Kiyoshi Tanaka. Path Relinking on Many-Objective NK-Landscapes. in Robert Schaefer, Carlos Cotta, Joanna Kolodziej and Günter Rudolph (editors) Parallel Problem Solving from Nature--PPSN XI, 11th International Conference, Proceedings, Part I, pp. 677--686, Springer, Lecture Notes in Computer Science Vol. 6238, Kraków, Poland, September, 2010.
  758. Ruth Pavón, Ricardo Brunelli and Christian von Lücken. Determining Optimal Crop Rotations by Using Multiobjective Evolutionary Algorithms. in Juan D. Velásquez, Sebastián A. Rìos, Robert J. Howlett, and Lakhmi C. Jain, (editors), Knowledge-Based and Intelligent Information and Engineering Systems, 13th International Conference (KES 2009), pp. 147-154, Springer, Lecture Notes in Computer Science, Vol. 5711, Santiago, Chile, 2009.
  759. Luciana R. Pedro and Ricardo H. C. Takahashi. Decision-Maker Preference Modeling in Interactive Multiobjective Optimization, in Robin C. Purshouse, Peter J. Fleming, Carlos M. Fonseca, Salvatore Greco and Jane Shaw (editors), Evolutionary Multi-Criterion Optimization, 7th International Conference, EMO 2013, pp. 811--824, Springer. Lecture Notes in Computer Science Vol. 7811, Sheffield, UK, March 19-22, 2013.
  760. Leif Pehrsson, Amos H.C. Ng and Jacob Bernedixen. Multi-objective Production Systems Optimisation with Investment and Running Cost, in Lihui Wang, Amos H.C. Ng and Kalyanmoy Deb (editors), Multi-objective Evolutionary Optimisation for Product Design and Manufacturing, Chapter 16, pp. 431--453, Springer, London, UK, 2011, ISBN 978-0-85729-617-7.
  761. Martin Pelikan, Kumara Sastry and David E. Goldberg. Multiobjective Estimation of Distribution Algorithms, in Martin Pelikan, Kumara Sastry and Erick Cantú-Paz (editors), Scalable Optimization via Probabilistic Modeling, pp. 223--248, Springer, Studies in Computational Intelligence Vol. 33, 2006, ISBN 978-3-540-34953-2.
  762. Wei Peng, Qingfu Zhang and Hui Li. Comparison between MOEA/D and NSGA-II on the Multi-Objective Travelling Salesman Problem, in Chi-Keong Goh, Yew-Soon Ong, and Kay Chen Tan (editors), Multi-Objective Memetic Algorithms, chapter 14, pp. 309--324, Springer, Studies in Computational Intelligence, Vol. 171, Berlin, Germany, 2009. ISBN 978-3-540-88050-9 .
  763. Ricardo Perera and Sheng-En Fang. Multi-objective Damage Identification Using Particle Swarm Optimization Techniques. in Nadia Nedjah, Leandro dos Santos Coelho and Luiza de Macedo de Mourelle, (editors), Multi-Objective Swarm Intelligent Systems. Theory & Experiences, chapter 8, pp. 179--207, Springer, Studies in Computational Intelligence, Vol. 261, Berlin, Germany, 2010. ISBN 978-3-642-05164-7.
  764. Jacques Périaux, Mourad Sefrioui and Bertrand Mantel. GA Multiple Objective Optimization Strategies for Electromagnetic Backscattering. In D. Quagliarella, J. Périaux, C. Poloni and G. Winter, editors, Genetic Algorithms and Evolution Strategies in Engineering and Computer Science. Recent Advances and Industrial Applications, chapter 11, pages 225-243. John Wiley & Sons, Chichester, UK, 1998.
  765. Andrei Petrovski and John McCall. Multi-objective Optimisation of Cancer Chemotherapy Using Evolutionary Algorithms. In Eckart Zitzler, Kalyanmoy Deb, Lothar Thiele, Carlos A. Coello Coello and David Corne, editors, First International Conference on Evolutionary Multi-Criterion Optimization, pages 531-545. Springer-Verlag. Lecture Notes in Computer Science No. 1993, 2001.
  766. Dung H. Phan and Junichi Suzuki. A Non-parametric Statistical Dominance Operator for Noisy Multiobjective Optimization, in Lam Thu Bui, Yew Soon Ong, Nguyen Xuan Hoai, Hisao Ishibuchi and Ponnuthurai Nagaratnam Suganthan (editors), Simulated Evolution and Learning, 9th International Conference, SEAL 2012, pp. 42--51, Springer. Lecture Notes in Computer Science Vol. 7673, Hanoi, Vietnam, December 16-19, 2012.
  767. Thomas Pierrard and Carlos A. Coello Coello. A Multi-Objective Artificial Immune System Based on Hypervolume, in Carlos A. Coelo Coello, Julie Greensmith, Natalio Krasnogor, Pietro Liò, Giuseppe Nicosia and Mario Pavone (Eds), Artificial Immune Systems, 11th International Conference, ICARIS 2012, pp. 14--27, Springer, Lecture Notes in Computer Science Vol. 7597, Taormina, Italy, August 28-31, 2012, ISBN 978-3-642-33756-7.
  768. Christian Pilato, Daniele Loiacono, Antonino Tumeo, Fabrizio Ferrandi, Pier Luca Lanzi and Donatella Sciuto. Speeding-Up Expensive Evaluations in High-Level Synthesis Using Solution Modeling and Fitness Inheritance, in Yoel Tenne and Chi-Keong Goh (editors), Computational Intelligence in Expensive Optimization Problems, pp. 701--723, Springer, Berlin, Germany, 2010. ISBN 978-3-642-10700-9.
  769. Theera Piroonratana and Nachol Chaiyaratana. Improved Multi-Objective Diversity Control Oriented Genetic Algorithm. in Leszek Rutkowski, Ryszard Tadeusiewicz, Lotfi A. Zadeh and Jacek M. Zurada, (editors), 8th International Conference on Artificial Intelligence and Soft Computing (ICAISC 2006), pp. 430--439, Springer, Lecture Notes in Computer Science, Vol. 4029, Zakopane, Poland, 2006.
  770. V.P. Plagianakos and D.K. Tasoulis and M.N. Vrahatis. A Review of Major Application Areas of Differential Evolution, in Uday K. Chakraborty (Editor), Advances in Differential Evolution, pp. 197--238, Springer, Berlin, 2008, ISBN 978-3-540-68827-3.
  771. Silvia Poles, Enrico Rigoni and Tea Robic. MOGA-II Performance on Noisy Optimization Problems, in Bogdan Filipic and Jurij Silc (editors), Bioinspired Optimization Methods and Their Applications. Proceedings of the International Conference on Bioinspired Optimization Methods and their Applications, BIOMA 2004, pp. 51--62, Jožef Stefan Institute, Ljubljana, Slovenia, October 2004.
  772. Silvia Poles, Mariana Vassileva and Daisuke Sasaki. Multiobjective Optimization Software, in Jürgen Branke, Kalyanmoy Deb, Kaisa Miettinen and Roman Slowinski (editors), Multiobjective Optimization. Interactive and Evolutionary Approaches, pp. 329--, Springer. Lecture Notes in Computer Science Vol. 5252, Berlin, Germany, 2008.
  773. Carlo Poloni. Hybrid GA for Multi-Objective Aerodynamic Shape Optimization. In G. Winter, J. Periaux, M. Galan and P. Cuesta, editors, Genetic Algorithms in Engineering and Computer Science, pages 397-416. Wiley & Sons, Chichester, 1995.
  774. Carlo Poloni and Valentino Pediroda. GA coupled with computationally expensive simulations: tools to improve efficiency. In D. Quagliarella, J. Périaux, C. Poloni and G. Winter, editors, Genetic Algorithms and Evolution Strategies in Engineering and Computer Science. Recent Advances and Industrial Applications, chapter 13, pages 267-288. John Wiley & Sons, Chichester, UK, 1998.
  775. Wolfgang Ponweiser, Tobias Wagner, Dirk Biermann and Markus Vincze. Multiobjective Optimization on a Limited Budget of Evaluations Using Model-Assisted S-Metric Selection, in Günter Rudolph, Thomas Jansen, Simon Lucas, Carlo Poloni and Nicola Beume (editors), Parallel Problem Solving from Nature--PPSN X, pp. 784--794, Springer, Lecture Notes in Computer Science Vol. 5199, Dortmund, Germany, September 2008.
  776. Mike Preuss, Boris Naujoks and Günter Rudolph. Pareto Set and EMOA Behavior for Simple Multimodal Multiobjective Functions, in Thomas Philip Runarsson, Hans-Georg Beyer, Edmund Burke, Juan J. Merelo-Guervós, L. Darrell Whitley and Xin Yao (editors), Parallel Problem Solving from Nature - PPSN IX, 9th International Conference, pp. 513--522, Springer. Lecture Notes in Computer Science Vol. 4193, Reykjavik, Iceland, September 2006.
  777. Mike Preuss, Christoph Kausch, Claude Bouvy and Frank Henrich. Decision Space Diversity Can Be Essential for Solving Multiobjective Real-World Problems. in Matthias Ehrgott, Boris Naujoks, Theodor J. Stewart and Jyrki Wallenius, (editors), Multiple Criteria Decision Making for Sustainable Energy and Transportation Systems, pp. 367--377, Springer, Lecture Notes in Economics and Mathematical Systems Vol. 634, Heidelberg, Germany, 2010.
  778. Mike Preuss. Improved Topological Niching for Real-Valued Global Optimization, in Cecilia Di Chio et al. (editors), Applications of Evolutionary Computation, EvoApplications 2012: EvoCOMNET, EvoCOMPLEX, EvoFIN, EvoGAMES, EvoHOT, EvoIASP, EvoNUM, EvoPAR, EvoRISK, EvoSTIM, and EvoSTOC, pp. 386--395, Springer. Lecture Notes in Computer Science Vol. 7248, Málaga, Spain, April 11-13, 2012.
  779. Mike Preuss and Simon Wessing. Measuring Multimodal Optimization Solution Sets with a View to Multiobjective Techniques, in Michael Emmerich, André Deutz, Oliver Schütze, Thomas Bäck, Emilia Tantar, Alexandru-Adrian Tantar, Pierre del Moral, Pierrick Legrand, Pascal Bouvry and Carlos Coello Coello (editors), EVOLVE - A Bridge between Probability, Set Oriented Numerics, and Evolutionary Computation IV, pp. 123--137, Springer, Advances in Intelligent Systems and Computing Vol. 227, Heidelberg, Germany, July 10-13, 2013, ISBN 978-3-319-01127-7.
  780. Joel Prieto, Benjamín Barán and Jorge Crichigno. Multitree-Multiobjective Multicast Routing for Traffic Engineering, in Max Bramer (editors), Artificial Intelligence in Theory and Practice, IFIP 19th World Computer Congress, TC12: IFIP AI 2006 Stream, pp. 247--256, Springer, Santiago, Chile, August 21-24, 2006, ISBN 9780-387-34654-0.
  781. Q

  782. Bo Yang Qu, Pushpan Gouthanan and Ponnuthurai Nagaratnam Suganthan. Dynamic Grouping Crowding Differential Evolution with Ensemble of Parameters for Multi-modal Optimization, in Bijaya Ketan Panigrahi, Swagatam Das, Ponnuthurai Nagaratnam Suganthan and Subhransu Sekhar Dash (editors), Swarm, Evolutionary, and Memetic Computing, First International Conference on Swarm, Evolutionary and Memetic Computing, SEMCCO 2010, pp. 19--28, Springer-Verlag. Lecture Notes in Computer Science Vol. 6466, Chennai, India, December 16-18, 2010.
  783. Domenico Quagliarella and Alessandro Vicini. Coupling Genetic Algorithms and Gradient Based Optimization Techniques. In D. Quagliarella, J. Périaux, C. Poloni and G. Winter, editors, Genetic Algorithms and Evolution Strategies in Engineering and Computer Science. Recent Advances and Industrial Applications, chapter 14, pages 289--309. John Wiley & Sons, Chichester, UK, 1998.
  784. Domenico Quagliarella and Giorgio Chinnici. Usage of Approximation Techniques in Evolutionary Algorithms with Application Examples to Aerodynamic Shape Design Problems, in William Annicchiarico, Jacques Périaux, Miguel Cerrolaza and Gabriel Winter (editors), Evolutionary Algorithms and Intelligent Tools in Engineering Optimization, pp. 167--189, WIT Press, CIMNE Barcelona, Southampton, Boston, 2005, ISBN 1-84564-038-1 .
  785. R

  786. Andreea Radulescu, Manuel López-Ibáñez and Thomas Stützle. Automatically Improving the Anytime Behaviour of Multiobjective Evolutionary Algorithms, in Robin C. Purshouse, Peter J. Fleming, Carlos M. Fonseca, Salvatore Greco and Jane Shaw (editors), Evolutionary Multi-Criterion Optimization, 7th International Conference, EMO 2013, pp. 825--840, Springer. Lecture Notes in Computer Science Vol. 7811, Sheffield, UK, March 19-22, 2013.
  787. Ramesh Rajagopalan, Chilukuri K. Mohan, Kishan G. Mehrotra and Pramod K. Varshney. Multi-Objective Evolutionary Algorithms for Sensor Network Design, in Lam Thu Bui and Sameer Alam (editors), Multi-Objective Optimization in Computational Intelligence: Theory and Practice, pp. 208-238, Information Science Reference, Hershey, PA, USA, 2008, ISBN 978-1-59904-498-9 .
  788. S. Ramesh, S. Kannan and S. Baskar. Application of Modified NSGA-II Algorithm to Reactive Power Optimization, in Dhinaharan Nagamalai, Eric Renault and Murugan Dhanuskodi (editors), Trends in Computer Science, Engineering and Information Technology, First International Conference on Computer Science, Engineering and Information Technology, CCSEIT 2011, pp. 344--354, Springer. Communications in Computer and Information Science Vol. 204, Tirunelveli, Tamil Nadu, India, September 23-25, 2011.
  789. Manojkumar Ramteke and Santosh K. Gupta. Multi-Objective Genetic Algorithm and Simulated Annealing with the Jumping Gene Adaptations, in Rangaiah Gade Pandu (editor), Multi-Objective Optimization Techniques and Applications in Chemical Engineering, chapter 4, pp. 91--130, World Scientific, Singapore, 2009, ISBN 978-981-283-651-9.
  790. S. Ranji Ranjithan, S. Kishan Chetan and Harish K. Dakshima. Constraint Method-Based Evolutionary Algorithm (CMEA) for Multiobjective Optimization. In Eckart Zitzler, Kalyanmoy Deb, Lothar Thiele, Carlos A. Coello Coello and David Corne, editors, First International Conference on Evolutionary Multi-Criterion Optimization, pages 299-313. Springer-Verlag. Lecture Notes in Computer Science No. 1993, 2001.
  791. Mehran Rashidi and Farzan Rashidi. Multi-Objective Optimal Design of Switch Reluctance Motors Using Adaptive Genetic Algorithm, in Bijaya Ketan Panigrahi, Swagatam Das, Ponnuthurai Nagaratnam Suganthan and Subhransu Sekhar Dash (editors), Swarm, Evolutionary, and Memetic Computing, First International Conference on Swarm, Evolutionary and Memetic Computing, SEMCCO 2010, pp. 591--598, Springer-Verlag. Lecture Notes in Computer Science Vol. 6466, Chennai, India, December 16-18, 2010.
  792. Abdul Rauf, Sajid Anwar, Naveed Kazim and Arshad Ali Shahid. Evolutionary Based Automated Coverage Analysis for GUI Testing, in Sanjay Ranka, Arunava Banerjee, Kanad Kishore Biswas, Sumeet Dua, Prabhat Mishra, Rajat Moona, Sheung-Hung Poon and Cho-Li Wang (editors), Contemporary Computing, Third International Conference, IC3 2010, pp. 456--466, Springer, Communications in Computer and Information Science, Berlin, 2010, ISBN 3-642-14833-6.
  793. Romain Raveaux, Barbu Eugen, Hervé Locteau, Sébastien Adam, Pierre Héroux and Eric Trupin. A Graph Classification Approach Using a Multi-objective Genetic Algorithm Application to Symbol Recognition, in Francisco Escolano and Mario Vento (editors), Graph-Based Representations in Pattern Recognition, 6th IAPR-TC-15 International Workshop, GbRPR 2007, pp. 361--370, Springer. Lecture Notes in Computer Science Vol. 4538, Alicante, Spain, June 11-13, 2007.
  794. Tapabrata Ray, Amitay Isaacs and Warren Smith. A Memetic Algorithm for Dynamic Multiobjective Optimization, in Chi-Keong Goh, Yew-Soon Ong, and Kay Chen Tan (editors), Multi-Objective Memetic Algorithms, chapter 16, pp. 353--367, Springer, Studies in Computational Intelligence, Vol. 171, Berlin, Germany, 2009. ISBN 978-3-540-88050-9.
  795. Tapabrata Ray. Applications of Multi-Objective Evolutionary Algorithms in Engineering Design, in Carlos A. Coello Coello and Gary B. Lamont (editors), Applications of Multi-Objective Evolutionary Algorithms, pp. 29--52, World Scientific, Singapore, 2004.
  796. Madhumita B. Ray. Applications of a Multi-Objective Genetic Algorithm in Chemical and Environmental Engineering, in Carlos A. Coello Coello and Gary B. Lamont (editors), Applications of Multi-Objective Evolutionary Algorithms, pp. 317--339, World Scientific, Singapore, 2004.
  797. T. Ray and K.W. Won. An evolutionary algorithm for constrained bi-objective optimization using radial slots, in Knowledge-Based Intelligent Information and Engineering Systems, Part 4, Proceedings, Springer, pp. 49--56, Lecture Notes in Artificial Intelligence Vol. 3684, 2005.
  798. Tapabrata Ray and Ruhul Sarker. Optimum Oil Production Planning using an Evolutionary Approach, in Keshav P. Dahal, Kay Chen Tan and Peter I Cowling (editors), Evolutionary Scheduling, pp. 273--292, Springer, Studies in Computational Intelligence (SCI), Berlin, 2007, ISBN 3-540-48582-1.
  799. Tapabrata Ray, Amitay Isaacs and Warren Smith. Surrogate Assisted Evolutionary Algorithm for Multi-Objective Optimization, in Rangaiah Gade Pandu (editor), Multi-Objective Optimization Techniques and Applications in Chemical Engineering, chapter 5, pp. 131--152, World Scientific, Singapore, 2009, ISBN 978-981-283-651-9.
  800. Patrick Reed and Venkat Devireddy. Groundwater Monitoring Design: A Case Study Combining Epsilon Dominance Archiving and Automatic Parameterization for the NSGA-II, in Carlos A. Coello Coello and Gary B. Lamont (editors), Applications of Multi-Objective Evolutionary Algorithms, pp. 79--100, World Scientific, Singapore, 2004.
  801. Ana Respicio and M. Eugénia Captivo. Bi-Objective Sequencing of Cutting Patterns, in Toshihide Ibaraki, Koji Nonobe and Matsunori Yagiura (editors), Meta-heuristics: Progress as Real Problem Solvers, Selected Papers from the 5th Metaheuristics International Conference (MIC 2003), pp. 226--241, Springer, 2005.
  802. Margarita Reyes Sierra and Carlos A. Coello Coello. A Study of Techniques to Improve the Efficiency of a Multi-Objective Particle Swarm Optimizer, in Shengxiang Yang, Yew Soon Ong and Yaochu Jin (editors), Evolutionary Computation in Dynamic and Uncertain Environments, pp. 269--296, Springer, 2007, ISBN 978-3-540-49772-1 .
  803. Alan P. Reynolds, David W. Corne and Michael J. Chantler. Feature Selection for Multi-purpose Predictive Models: A Many-Objective Task. in Robert Schaefer, Carlos Cotta, Joanna Kolodziej and Günter Rudolph (editors) Parallel Problem Solving from Nature--PPSN XI, 11th International Conference, Proceedings, Part I, pp. 384--393, Springer, Lecture Notes in Computer Science Vol. 6238, Kraków, Poland, September, 2010.
  804. Enrico Rigoni, Carlos Kavka, Alessandro Turco, Gianluca Palermo, Cristina Silvano, Vittorio Zaccaria and Giovanni Mariani. Optimization Algorithms for Design Space Exploration of Embedded Systems, in Cristina Silvano, William Fornaciari and Eugenio Villar (editors), Multi-objective Design Space Exploration of Multiprocessor SoC Architectures, The MULTICUBE Approach, Chapter 3, pp. 51--74, Springer, New York, USA, 2011, ISBN 978-1-4419-8836-2.
  805. Kazi Shah Nawaz Ripon, Chi-Ho Tsang and Sam Kwong. An Evolutionary Approach for Solving the Multi-Objective Job-Shop Scheduling Problem, in Keshav P. Dahal, Kay Chen Tan and Peter I Cowling (editors), Evolutionary Scheduling, pp. 165--195, Springer, Studies in Computational Intelligence (SCI), Berlin, 2007, ISBN 3-540-48582-1.
  806. José L. Risco-Martín, David Atienza, J. Ignacio Hidalgo and Juan Lanchares. Parallel and Distributed Optimization of Dynamic Data Structures for Multimedia Embedded Systems, in Francisco Fernández de Vega and Erick Cantú-Paz (editors), Parallel and Distributed Computational Intelligence, pp. 263--290, Springer, Berlin, Germany, 2010.
  807. Claudio M. Rocco S. and Daniel E. Salazar A. A Hybrid Approach Based on Evolutionary Strategies and Interval Arithmetic to Perform Robust Designs, in Shengxiang Yang, Yew Soon Ong and Yaochu Jin (editors), Evolutionary Computation in Dynamic and Uncertain Environments, pp. 543--564, Springer, 2007, ISBN 978-3-540-49772-1.
  808. Samuel Rochet and Claude Baron. An Evolutionary Algorithm for Decisional Assistance to Project Management, in Jean-Philippe Rennard (editor), Handbook of Research on Nature Inspired Computing for Economy and Management, pp. 444--464, Vol. II, Idea Group Reference, Hershey, UK, 2006, ISBN 1-59140-984-5.
  809. Katya Rodríguez-Vázquez and Peter J. Fleming. Multiobjective GP for Human-Understandable Models: A Practical Application , in Joshua Knowles, David Corne and Kalyanmoy Deb (Editors), Multi-Objective Problem Solving from Nature: From Concepts to Applications, pp. 201--218, Springer, Berlin, 2008, ISBN 978-3-540-72963-1.
  810. Jani Rönkkönen, Xiaodong Li, Ville Kyrki and Jouni Lampinen. A Generator for Multimodal Test Functions with Multiple Global Optima, in Xiaodong Li, Michael Kirley, Mengjie Zhang, David G. Green, Victor Ciesielski, Hussein A. Abbass, Zbigniew Michalewicz, Tim Hendtlass, Kalyanmoy Deb, Kay Chen Tan, Jürgen Branke and Yuhui Shi (editors), Simulated Evolution and Learning, 7th International Conference, SEAL 2008, pp. 239--248, Springer. Lecture Notes in Computer Science, Vol. 5361, Melbourne, Australia, December 2008.
  811. Alejandro Rosales-Péerez, Hugo Jair Escalante, Jesus A. Gonzalez, Carlos A. Reyes-Garcia and Carlos A. Coello Coello. Bias and Variance Multi-objective Optimization for Support Vector Machines Model Selection, in João M. Sanches, Luisa Micó and Jaime S. Cardoso (editors), Pattern Recognition and Image Analysis, 6th Iberian Conference, IbPRIA 2013, pp. 108--116, Springer. Lecture Notes in Computer Science Vol. 7887, Madeira, Portugal, June 5-7, 2013.
  812. Susanne Rosenthal, Nail El-Sourani and Markus Borschbach. Introduction of a Mutation Specific Fast Non-dominated Sorting GA Evolved for Biochemical Optimizations, in Lam Thu Bui, Yew Soon Ong, Nguyen Xuan Hoai, Hisao Ishibuchi and Ponnuthurai Nagaratnam Suganthan (editors), Simulated Evolution and Learning, 9th International Conference, SEAL 2012, pp. 158--167, Springer. Lecture Notes in Computer Science Vol. 7673, Hanoi, Vietnam, December 16-19, 2012.
  813. Susanne Rosenthal, Nail El-Sourani and Markus Borschbach. Impact of Different Recombination Methods in a Mutation-Specific MOEA for a Biochemical Application, in Leonardo Vanneschi, William S. Bush and Mario Giacobini (editors), Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics, 11th European Conference, EvoBIO 2013, pp. 188-199, Springer. Lecture Notes in Computer Science Vol. 7833, Vienna, Austria, April 3-5, 2013.
  814. Susanne Rosenthal and Markus Borschbach. A Benchmark on the Interaction of Basic Variation Operators in Multi-objective Peptide Design Evaluated by a Three Dimensional Diversity Metric and a Minimized Hypervolume, in Michael Emmerich, André Deutz, Oliver Schütze, Thomas Bäck, Emilia Tantar, Alexandru-Adrian Tantar, Pierre del Moral, Pierrick Legrand, Pascal Bouvry and Carlos Coello Coello (editors), EVOLVE - A Bridge between Probability, Set Oriented Numerics, and Evolutionary Computation IV, pp. 139--153, Springer, Advances in Intelligent Systems and Computing Vol. 227, Heidelberg, Germany, July 10-13, 2013, ISBN 978-3-319-01127-7.
  815. Stefan Roth and Alexander Gepperth and Christian Igel. Multi-Objective Neural Network Optimization for Visual Object Detection, in Yaochu Jin (Editor), Multi-Objective Machine Learning, pp. 629--655, Springer. Studies in Computational Intelligence, Volume 16, Berlin, 2006.
  816. Rajkumar Roy and Jorn Mehnen. Technology Transfer: Academia to Industry, in Tina Yu, Lawrence Davis, Cem Baydar and Rajkumar Roy (editors), Evolutionary Computation in Practice, pp. 263--281, Springer, 2008, ISBN 978-3-540-75770-2.
  817. Álvaro Rubio-Largo and Miguel A. Vega-Rodríguez. A Multiobjective Approach Based on the Law of Gravity and Mass Interactions for Optimizing Networks, in Martin Middendorf and Christian Blum (editors), Evolutionary Computation in Combinatorial Optimization, 13th European Conference, EvoCOP 2013, pp. 13--24, Springer. Lecture Notes in Computer Science Vol. 7832, Vienna, Austria, April 3-5, 2013.
  818. Álvaro Rubio-Largo and Miguel A. Vega-Rodríguez. Routing Low-Speed Traffic Requests onto High-Speed Lightpaths by Using a Multiobjective Firefly Algorithm, in Anna I. Esparcia-Alcázar et al. (editors), Applications of Evolutionary Computation, 16th European Conference, EvoApplications 2013, pp. 12--21, Springer. Lecture Notes in Computer Science Vol. 7835, Vienna, Austria, April 3-5, 2013.
  819. Günter Rudolph and Hans-Paul Schwefel. Simulated Evolution under Multiple Criteria Conditions Revisited, in Jacek M. Zurada, Gary G. Yen and Jun Wang (editors), Computational Intelligence: Research Frontiers. IEEE World Congress on Computational Intelligence (WCCI'2008), pp. 249--261, Springer, Lecture Notes in Computer Science, Vol. 5050, Hong Kong, China, June 1-6 2008. ISBN 978-3-540-68858-7.
  820. Günter Rudolph, Heike Trautmann, Soumyadip Sengupta and Oliver Schütze. Evenly Spaced Pareto Front Approximations for Tricriteria Problems Based on Triangulation, in Robin C. Purshouse, Peter J. Fleming, Carlos M. Fonseca, Salvatore Greco and Jane Shaw (editors), Evolutionary Multi-Criterion Optimization, 7th International Conference, EMO 2013, pp. 443--458, Springer. Lecture Notes in Computer Science Vol. 7811, Sheffield, UK, March 19-22, 2013.
  821. Conor Ryan. Pygmies and Servants. In Jr. Kenneth E. Kinnear, editor, Advances in Genetic Programming, pages 243-263. The MIT Press, Cambridge, Massachussets, 1994.
  822. S

  823. Nima Safaei, Dragan Banjevic and Andrew K.S. Jardine. Multi-objective Simulated Annealing for a Maintenance Workforce Scheduling Problem: A case Study, in Cher Ming Tan (editor), Simulated Annealing, pp. 27--48, In-Teh, Croatia, September 2008, ISBN 978-953-7619-07-7.
  824. Indrajit Saha, Ujjwal Maulik and Sanghamitra Bandyopadhyay. An Improved Multi-objective Technique for Fuzzy Clustering with Application to IRS Image Segmentation. in Mario Giacobini, Anthony Brabazon, Stefano Cagnoni, Gianni A. Di Caro, Anikó Ekárt, Anna Isabel Esparcia-Alcázar, Muddassar Farooq, Andreas Fink and Penousal Machado, (editors), Applications of Evolutionary Computing (EvoWorkshops 2009), pp. 426--431, Springer, Lecture Notes in Computer Science, Vol. 5484, Heidelberg, Germany, 2009.
  825. D. Sal and M. Graña. A Multiobjective Evolutionary Algorithm for Hyperspectral Image Watermarking, in Manuel Graña and Richard J. Duro (editors), Computational Intelligence for Remote Sensing, pp. 63--78, Springer, Studies in Computational Intelligence Vol. 133, 2008.
  826. Daniel E. Salazar Aponte, Claudio M. Rocco S. and Blas Galván. On Uncertainty and Robustness in Evolutionary Optimization-Based MCDM, in Matthias Ehrgott, Carlos M. Fonseca, Xavier Gandibleux, Jin-Kao Hao and Marc Sevaux (editors), Evolutionary Multi-Criterion Optimization. 5th International Conference, EMO 2009, pp. 51--65, Springer. Lecture Notes in Computer Science Vol. 5467, Nantes, France, April 2009.
  827. Shaul Salomon, Gideon Avigad, Alex Goldvard and Oliver Schütze. PSA - A new Scalable Space Partition Based Selection Algorithm for MOEAs, in Oliver Schütze, Carlos A. Coello Coello, Alexandru-Adrian Tantar, Emilia Tantar, Pascal Bouvry, Pierre Del Moral and Pierrick Legrand (editors), EVOLVE - A Bridge between Probability, Set Oriented Numerics, and Evolutionary Computation II, pp. 137--151, Springer, Advances in Intelligent Systems and Computing Vol. 175, Berlin, Germany, 2012, ISBN 978-3-642-31519-0.
  828. Shaul Salomon, Gideon Avigad, Peter J. Fleming and Robin C. Purshouse. Optimization of Adaptation - A Multi-objective Approach for Optimizing Changes to Design Parameters, in Robin C. Purshouse, Peter J. Fleming, Carlos M. Fonseca, Salvatore Greco and Jane Shaw (editors), Evolutionary Multi-Criterion Optimization, 7th International Conference, EMO 2013, pp. 21--35, Springer. Lecture Notes in Computer Science Vol. 7811, Sheffield, UK, March 19-22, 2013.
  829. Shaul Salomon, Christian Domínguez-Medina, Gideon Avigad, Alan Freitas, Alex Goldvard, Oliver Schütze and Heike Trautmann. PSA Based Multi Objective Evolutionary Algorithms, in Oliver Schütze, Carlos A. Coello Coello, Alexandru-Adrian Tantar, Emilia Tantar, Pascal Bouvry, Pierre Del Moral and Pierrick Legrand (editors), EVOLVE - A Bridge between Probability, Set Oriented Numerics, and Evolutionary Computation III, pp. 233--259, Springer. Studies in Computational Intelligence Vol. 500, Heidelberg, Germany, 2014, ISBN 978-3-319-01459-3 .
  830. M.P. Sanchez and J.A. Almansa. A real application example of a control structure selection by means of a multiobjective genetic algorithm, in Artificial Neural Nets Problem Solving Methods, Part II. Springer. Lecture Notes in Computer Science. Volume 2687, pp. 369--376, 2003.
  831. Eric Sandgren. Multicriteria design optimization by goal programming. In Hojjat Adeli, editor, Advances in Design Optimization, chapter 23, pages 225-265. Chapman & Hall, London, 1994.
  832. Angelica Sandoval-Perez, David Becerra, Diana Vanegas, Daniel Restrepo-Montoya and Fernando Nino. A Multi-objective Optimization Energy Approach to Predict the Ligand Conformation in a Docking Process, in Krzysztof Krawiec, Alberto Moraglio, Ting Hu, A. Sima Etaner-Uyar and Bin Hu (editors), Genetic Programming, 16th European Conference, EuroGP 2013, pp. 181--192, Springer. Lecture Notes in Computer Science Vol. 7831, Vienna, Austria, April 3-5, 2013.
  833. Eleonora Riva Sanseverino, Maria Luisa Di Silvestre and Roberto Gallea. Pareto-optimal Glowworm Swarms Optimization for Smart Grids Management, in Anna I. Esparcia-Alcázar et al. (editors), Applications of Evolutionary Computation, 16th European Conference, EvoApplications 2013, pp. 22--31, Springer. Lecture Notes in Computer Science Vol. 7835, Vienna, Austria, April 3-5, 2013.
  834. Luis V. Santana-Quintero, Noel Ramírez-Santiago, Carlos A. Coello Coello, Julián Molina Luque and Alfredo García Hernández-Díaz. A New Proposal for Multiobjective Optimization Using Particle Swarm Optimization and Rough Sets Theory, in Thomas Philip Runarsson, Hans-Georg Beyer, Edmund Burke, Juan J. Merelo-Guervós, L. Darrell Whitley and Xin Yao (editors), Parallel Problem Solving from Nature - PPSN IX, 9th International Conference, pp. 483--492, Springer. Lecture Notes in Computer Science Vol. 4193, Reykjavik, Iceland, September 2006.
  835. Luis V. Santana-Quintero, Noel Ramírez and Carlos Coello Coello. A Multi-objective Particle Swarm Optimizer Hybridized with Scatter Search, in Alexander Gelbukh and Carlos Alberto Reyes-Garcia (editors), MICAI 2006: Advances in Artificial Intelligence, 5th Mexican International Conference on Artificial Intelligence, pp. 294--304, Springer, Lecture Notes in Artificial Intelligence Vol. 4293, Apizaco, Mexico, November 2006.
  836. Luis V. Santana-Quintero, Noel Ramírez-Santiago and Carlos A. Coello Coello. Towards a More Efficient Multi-Objective Particle Swarm Optimizer, in Lam Thu Bui and Sameer Alam (editors), Multi-Objective Optimization in Computational Intelligence: Theory and Practice, pp. 76--105, Information Science Reference, Hershey, PA, USA, 2008, ISBN 978-1-59904-498-9 .
  837. Luis V. Santana-Quintero, Alfredo Arias Montaño and Carlos A. Coello Coello. A Review of Techniques for Handling Expensive Functions in Evolutionary Multi-Objective Optimization, in Yoel Tenne and Chi-Keong Goh (editors), Computational Intelligence in Expensive Optimization Problems, pp. 29--59, Springer, Berlin, Germany, 2010, ISBN 978-3-642-10700-9.
  838. Sergio Santander-Jiménez and Miguel A. Vega-Rodríguez. A Multiobjective Proposal Based on the Firefly Algorithm for Inferring Phylogenies, in Leonardo Vanneschi, William S. Bush and Mario Giacobini (editors), Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics, 11th European Conference, EvoBIO 2013, pp. 141--152, Springer. Lecture Notes in Computer Science Vol. 7833, Vienna, Austria, April 3-5, 2013.
  839. Daniela S. Santos, Denise de Oliveira and Ana L.C. Bazzan. A Multiagent, Multiobjective Clustering Algorithm, in Longbing Cao (editor), Data Mining and Multi-agent Integration, pp. 239--249, Springer, London, 2009, ISBN 978-1-4419-0522-2.
  840. Amit Saraswat and Ashish Saini. A Novel Hybrid Fuzzy Multi-Objective Evolutionary Algorithm: HFMOEA, in Natarajan Meghanathan, Nabendu Chaki and Dhinaharan Nagamalai (editors), Advances in Computer Science and Information Technology, Second International Conference, CCSIT 2012, pp. 168--177, Springer. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineer Vol. 86, Bangalore, India, January 2-4, 2012.
  841. Ruhul Sarker and Carlos A. Coello Coello. Assessment Methodologies for Multiobjective Evolutionary Algorithms, in Ruhul Sarker, Masoud Mohammadian and Xin Yao (eds), Evolutionary Optimization, pp. 177--195, Kluwer Academic Publishers, New York, February 2002, ISBN 0-7923-7654-4.
  842. R. Sarker, H. Abbass and C. Newtorn. Solving Two Multi-objective Optimization Problems using Evolutionary Algorithm, In M. Mohammadian, R. Sarker and X. Yao (editors), Computational Intelligence in Control, Idea Group Publishing, USA .
  843. Ruhul A. Sarker, Hussein A. Abbass and Charles S. Newton, Solving Two Multi-Objective Optimization Problems Using Evolutionary Algorithm, in Masoud Mohammadian, Ruhul Amin Sarker and Xin Yao (Editors), Computational Intelligence in Control, Chapter XIII, pp. 218--232, Idea Group Publishing, Hershey, Philadelphia, USA, 2003.
  844. Madan Sathe, Olaf Schenk and Helmar Burkhart. Solving Bi-objective Many-Constraint Bin Packing Problems in Automobile Sheet Metal Forming Processes, in Matthias Ehrgott, Carlos M. Fonseca, Xavier Gandibleux, Jin-Kao Hao and Marc Sevaux (editors), Evolutionary Multi-Criterion Optimization. 5th International Conference, EMO 2009, pp. 246--260, Springer. Lecture Notes in Computer Science Vol. 5467, Nantes, France, April 2009.
  845. Navrati Saxena, Abhishek Roy and Jitae Shin. A Multi-objective Genetic Algorithmic Approach for QoS-Based Energy-Efficient Sensor Routing Protocol, in Shingo Ata and Choong Seon Hong (editors), Managing Next Generation Networks and Services, 10th Asia-Pacific Network Operations and Management Symposium, APNOMS 2007, pp. 523--526, Springer. Lecture Notes in Computer Science Vol. 4773, Sapporo, Japan, October 10-12, 2007.
  846. Ivo F. Sbalzarini, Sibylle Müller and Petros Koumoutsakos. Microchannel Optimization Using Multiobjective Evolution Strategies. In Eckart Zitzler, Kalyanmoy Deb, Lothar Thiele, Carlos A. Coello Coello and David Corne, editors, First International Conference on Evolutionary Multi-Criterion Optimization, pages 516-530. Springer-Verlag. Lecture Notes in Computer Science No. 1993, 2001.
  847. Julien Schleich, Grégoire Danoy, Bernabé Dorronsoro and Pascal Bouvry. An Overlay Approach for Optimising Small-World Properties in VANETs, in Anna I. Esparcia-Alcázar et al. (editors), Applications of Evolutionary Computation, 16th European Conference, EvoApplications 2013, pp. 32--41, Springer. Lecture Notes in Computer Science Vol. 7835, Vienna, Austria, April 3-5, 2013.
  848. Frank Schlottmann and Detlef Seese. Financial Applications of Multi-Objective Evolutionary Algorithms: Recent Developments and Future Research Directions, in Carlos A. Coello Coello and Gary B. Lamont (editors), Applications of Multi-Objective Evolutionary Algorithms, pp. 627--652, World Scientific, Singapore, 2004.
  849. Isabella Schoeman and Andries Engelbrecht. Niching for Dynamic Environments using Particle Swarm Optimization, in Tzai-Der Wang, Xiaodong Li, Shu-Heng Chen, Xufa Wang, Hussein Abbass, Hitoshi Iba, Guoliang Chen and Xin Yao (editors), Simulated Evolution and Learning, 6th International Conference, SEAL 2006, pp. 134--141, Springer. Lecture Notes in Computer Science Vol. 4247, Hefei, China, October 2006.
  850. Isabella Schoeman and Andries P. Engelbrecht. Effect of Particle Initialization on the Performance of Particle Swarm Niching Algorithms. in Marco Dorigo, Mauro Birattari, Gianni A. Di Caro, René Doursat, Andries P. Engelbrecht, Dario Floreano, Luca Maria Gambardella, Roderich Gross, Erol Sahin, Hiroki Sayama and Thomas Stützle, (editors), Swarm Intelligence. 7th International Conference, ANTS 2010, pp. 560--561, Springer, Lecture Notes in Computer Science Vol. 6234, Brussels, Belgium, September 8-10, 2010.
  851. Marc Schoenauer, Pierre Savéant and Vincent Vidal. Divide-and-Evolve: a Sequential Hybridization Strategy Using Evolutionary Algorithms, in Patrick Siarry and Zbigniew Michalewicz (editors), Advances in Metaheuristic Methods for Hard Optimization, pp. 179--198, Springer, Berlin, 2008, ISBN 978-3-540-72959-4 .
  852. Oliver Schütze, Carlos Coello Coello and El-Ghazali Talbi. Approximating the epsilon-Efficient Set of an MOP with Stochastic Search Algorithms, in Alexander Gelbukh and Ángel Fernando Kuri Morales (editors), MICAI 2007: Advances in Artificial Intelligence, 6th International Conference on Artificial Intelligence, pp. 128--138, Springer, Lecture Notes in Artificial Intelligence Vol. 4827, Aguascalientes, México, November 2007.
  853. Oliver Schütze, Massimiliano Vasile and Carlos A. Coello Coello. Approximate Solutions in Space Mission Design, in Günter Rudolph, Thomas Jansen, Simon Lucas, Carlo Poloni and Nicola Beume (editors), Parallel Problem Solving from Nature--PPSN X, pp. 805--814, Springer, Lecture Notes in Computer Science Vol. 5199, Dortmund, Germany, September 2008.
  854. Oliver Schütze, Marco Laumanns and Carlos A. Coello Coello. Approximating the Knee of an MOP with Stochastic Search Algorithms, in Günter Rudolph, Thomas Jansen, Simon Lucas, Carlo Poloni and Nicola Beume (editors), Parallel Problem Solving from Nature--PPSN X, pp. 795--804, Springer, Lecture Notes in Computer Science Vol. 5199, Dortmund, Germany, September 2008.
  855. Oliver Schuetze, Carlos A. Coello Coello, Emilia Tantar and El-Ghazali Talbi. Computing Finite Size Representations of the Set of Approximate Solutions of an MOP with Stochastic Search Algorithms, in 2008 Genetic and Evolutionary Computation Conference (GECCO'2008), pp. 713--720, ACM Press, Atlanta, USA, July 2008, ISBN 978-1-60558-131-6.
  856. Oliver Schuetze, Gustavo Sanchez and Carlos A. Coello Coello. A New Memetic Strategy for the Numerical Treatment of Multi-Objective Optimization Problems, in 2008 Genetic and Evolutionary Computation Conference (GECCO'2008), pp. 705--712, ACM Press, Atlanta, USA, July 2008, ISBN 978-1-60558-131-6.
  857. Carlos Segura, Alejandro Cervantes, Antonio J. Nebro, María Dolores Jaraíz-Simón, Eduardo Segredo, Sandra García, Francisco Luna, Juan Antonio Gómez-Pulido, Gara Miranda, Cristóbal Luque, Enrique Alba, Miguel Ángel Vega-Rodríguez, Cromoto León and Inés M. Galván. Optimizing the DFCN Broadcast Protocol with a Parallel Cooperative Strategy of Multi-Objective Evolutionary Algorithms, in Matthias Ehrgott, Carlos M. Fonseca, Xavier Gandibleux, Jin-Kao Hao and Marc Sevaux (editors), Evolutionary Multi-Criterion Optimization. 5th International Conference, EMO 2009, pp. 305--319, Springer. Lecture Notes in Computer Science Vol. 5467, Nantes, France, April 2009.
  858. Carlos Segura, Eduardo Segredo and Coromoto León. Analysing the Robustness of Multiobjectivisation Approaches Applied to Large Scale Optimisation Problems, in Emilia Tantar, Alexandru-Adrian Tantar, Pascal Bouvry, Pierre Del Moral, Pierrick Legrand, Carlos A. Coello Coello and Oliver Schütze (editors), EVOLVE - A bridge between Probability, Set Oriented Numerics and Evolutionary Computation, Chapter 11, pp. 365--391, Springer-Verlag, Heidelberg, Germany, Studies in Computational Intelligence Vol. 447, 2013, ISBN 978-3-642-32725-4.
  859. Zbigniew Sekulski. Multi-objective optimization of ship hull structure by genetic algorithm, in Tomasz Kiczkowiak and Wojciech Tarnowski (editors), Polioptymalizacja i komputerowe wspomaganie projektowania. Mielno 2012, pp. 105--132, Wydawnictwo Uczelniane Politechniki Koszaliskiej, Koszalin, Poland, 2012.
  860. Barbara Korousic Seljak. Dietary Menu Planning by Evolutionary Computation, in Bogdan Filipic and Jurij Silc (editors), Bioinspired Optimization Methods and their Applications, pp. 87--98, Jozef Stefan Institute, October 2006.
  861. B. Selvabala and D. Devaraj. Co-ordinated Design of AVR-PSS Using Multi Objective Genetic Algorithm, in Bijaya Ketan Panigrahi, Swagatam Das, Ponnuthurai Nagaratnam Suganthan and Subhransu Sekhar Dash (editors), Swarm, Evolutionary, and Memetic Computing, First International Conference on Swarm, Evolutionary and Memetic Computing, SEMCCO 2010, pp. 481--493, Springer-Verlag. Lecture Notes in Computer Science Vol. 6466, Chennai, India, December 16-18, 2010.
  862. Khedidja Seridi, Laetitia Jourdan and El-Ghazali Talbi. Multiobjective Path Relinking for Biclustering: Application to Microarray Data, in Robin C. Purshouse, Peter J. Fleming, Carlos M. Fonseca, Salvatore Greco and Jane Shaw (editors), Evolutionary Multi-Criterion Optimization, 7th International Conference, EMO 2013, pp. 200--214, Springer. Lecture Notes in Computer Science Vol. 7811, Sheffield, UK, March 19-22, 2013.
  863. Víctor Serrano, Matías Alvarado and Carlos A. Coello Coello. Optimization to Manage Supply Chain Disruptions Using the NSGA-II, in Oscar Castillo, Patricia Melin, Oscar Montiel Ross, Roberto Sepúlveda Cruz, Witold Pedrycz and Janusz Kacprzyk (editors), Theoretical Advances and Applications of Fuzzy Logic and Soft Computing, pp. 476--485, Springer-Verlag, Berlin, 2007.
  864. Christian Setzkorn. Classification and Survival Analysis Using Multi-objective Evolutionary Algorithms, in Ashish Ghosh, Satchidananda Dehuri and Susmita Ghosh, editors, Multi-objective Evolutionary Algorithms for Knowledge Discovery from Data Bases, pp. 109--135, Springer, Berlin, 2008, ISBN 978-3-540-77466-2.
  865. Kamran Shafi, Axel Bender and Hussein A. Abbass. Multi Objective Learning Classifier Systems Based Hyperheuristics for Modularised Fleet Mix Problem, in Lam Thu Bui, Yew Soon Ong, Nguyen Xuan Hoai, Hisao Ishibuchi and Ponnuthurai Nagaratnam Suganthan (editors), Simulated Evolution and Learning, 9th International Conference, SEAL 2012, pp. 381--390, Springer. Lecture Notes in Computer Science Vol. 7673, Hanoi, Vietnam, December 16-19, 2012.
  866. Nipen M. Shah, Gade Pandu Rangaiah and Andrew F. A. Hoadley. Multi-Objective Optimization of Multi-Stage Gas-Phase Refrigeration Systems, in Rangaiah Gade Pandu (editor), Multi-Objective Optimization Techniques and Applications in Chemical Engineering, chapter 8, pp. 237--276, World Scientific, Singapore, 2009, ISBN 978-981-283-651-9 .
  867. Ruchit A. Shah, Patrick M. Reed and Timothy W. Simpson. Many-Objective Evolutionary Optimisation and Visual Analytics for Product Family Design, in Lihui Wang, Amos H.C. Ng and Kalyanmoy Deb (editors), Multi-objective Evolutionary Optimisation for Product Design and Manufacturing, Chapter 4, pp. 137--159, Springer, London, UK, 2011, ISBN 978-0-85729-617-7.
  868. Adel M. Sharaf and Adel A.A. El-Gammal. Particle Swarm Optimization PSO: A New Search Tool in Power System and Electro Technology, in Bijaya Ketan Panigrahi, Ajith Abraham and Swagatam Das (editors), Computational Intelligence in Power Engineering, pp. 235--294, Springer, Studies in Computational Intelligence (SCI), Berlin, 2010, ISBN 978-3-642-14012-9.
  869. Deepak Sharma and Pierre Collet. GPGPU-Compatible Archive Based Stochastic Ranking Evolutionary Algorithm (G-ASREA) for Multi-Objective Optimization. in Robert Schaefer, Carlos Cotta, Joanna Kolodziej and Günter Rudolph (editors), Parallel Problem Solving from Nature--PPSN XI, 11th International Conference, Proceedings, Part II, pp. 111--120, Springer, Lecture Notes in Computer Science Vol. 6239, Kraków, Poland, September, 2010.
  870. Kristina Shea, Andrew Sedgwick and Giulio Antonuntto. Multicriteria Optimization of Paneled Building Envelopes Using Ant Colony Optimization. in Ian F.C. Smith, (editor), Intelligent Computing in Engineering and Architecture, 13th EG-ICE Workshop 2006, pp. 627-636, Springer. Lecture Notes in Computer Science. Vol. 4200, Ascona, Switzerland, 2006.
  871. Santosh N. Shelke and R.V. Chalam. Optimum Power Loss in Eight Pole Radial Magnetic Bearing: Multi Objective Genetic Algorithm, in Vinu V. Das and Nessy Thankachan (editors), Computational Intelligence and Information Technology, First International Conference, CIIT 2011, pp. 72--77, Springer. Communications in Computer and Information Science Vol. 250, Pune, India, November 7-8, 2011.
  872. Tomohiro Shimada, Masayuki Otani, Hiroyasu Matsushima, Hiroyuki Sato, Kiyohiko Hattori and Keiki Takadama. Hybrid Directional-Biased Evolutionary Algorithm for Multi-Objective Optimization. in Robert Schaefer, Carlos Cotta, Joanna Kolodziej and Günter Rudolph (editors), Parallel Problem Solving from Nature--PPSN XI, 11th International Conference, Proceedings, Part II, pp. 121--130, Springer, Lecture Notes in Computer Science Vol. 6239, Kraków, Poland, September, 2010.
  873. Koji Shimoyama, Jin Ne Lim, Shinkyu Jeong, Shigeru Obayashi and Masataka Koishi. Multi-Objective Robust Optimization Assisted by Response Surface Approximation and Visual Data-Mining, in Chi-Keong Goh, Yew-Soon Ong, and Kay Chen Tan (editors), Multi-Objective Memetic Algorithms, chapter 7, pp. 133--151, Springer, Studies in Computational Intelligence, Vol. 171, Berlin, Germany, 2009. ISBN 978-3-540-88050-9.
  874. Soo-Yong Shin, In-Hee Lee and Byoung-Tak Zhang. Evolutionary Multi-Objective Optimization for DNA Sequence Design, in Lam Thu Bui and Sameer Alam (editors), Multi-Objective Optimization in Computational Intelligence: Theory and Practice, pp. 239--264, Information Science Reference, Hershey, PA, USA, 2008, ISBN 978-1-59904-498-9.
  875. Ofer M. Shir, Christian Siedschlag, Thomas Bäck and Marc J.J. Vrakking. Niching in Evolution Strategies and Its Application to Laser Pulse Shaping, in El-Ghazali Talbi, Pierre Liardet, Pierre Collet, Evelyne Lutton and Marc Schoenauer (editors), Artificial Evolution, 7th International Conference, Evolution Artificielle, EA 2005, pp. 85--96, Springer. Lecture Notes in Computer Science Vol. 3871, Lille, France, October 2005.
  876. Ofer M. Shir and Thomas Bäck. Niche Radius Adaptation in the CMA-ES Niching Algorithm, in Thomas Philip Runarsson, Hans-Georg Beyer, Edmund Burke, Juan J. Merelo-Guervós, L. Darrell Whitley and Xin Yao (editors), Parallel Problem Solving from Nature - PPSN IX, 9th International Conference, pp. 142--151, Springer. Lecture Notes in Computer Science Vol. 4193, Reykjavik, Iceland, September 2006.
  877. Ofer M. Shir, Mike Preuss, Noris Naujoks and Michael Emmerich. Enhancing Decision Space Diversity in Evolutionary Multiobjective Algorithms, in Matthias Ehrgott, Carlos M. Fonseca, Xavier Gandibleux, Jin-Kao Hao and Marc Sevaux (editors), Evolutionary Multi-Criterion Optimization. 5th International Conference, EMO 2009, pp. 95--109, Springer. Lecture Notes in Computer Science Vol. 5467, Nantes, France, April 2009.
  878. Ofer M. Shir. Niching in Evolutionary Algorithms, in Grzegorz Rozenberg, Thomas Bäck and Joost N. Kok (editors), Handbook of Natural Computing, Chapter 32, pp. 1035--1069, Springer, Berlin, Germany, 2012, ISBN 978-3-540-92909-3.
  879. Pradyumn Kumar Shukla, Christian Hirsch and Hartmut Schmeck. In Search of Equitable Solutions Using Multi-objective Evolutionary Algorithms. in Robert Schaefer, Carlos Cotta, Joanna Kolodziej and Günter Rudolph (editors) Parallel Problem Solving from Nature--PPSN XI, 11th International Conference, Proceedings, Part I, pp. 687--696, Springer, Lecture Notes in Computer Science Vol. 6238, Kraków, Poland, September, 2010.
  880. Pradyumn Kumar Shukla, Christian Hirsch and Hartmut Schmeck. A Framework for Incorporating Trade-Off Information Using Multi-Objective Evolutionary Algorithms. in Robert Schaefer, Carlos Cotta, Joanna Kolodziej and Günter Rudolph (editors), Parallel Problem Solving from Nature--PPSN XI, 11th International Conference, Proceedings, Part II, pp. 131--140, Springer, Lecture Notes in Computer Science Vol. 6239, Kraków, Poland, September, 2010.
  881. Pradyumn Kumar Shukla, Christian Hirsch and Hartmut Schmeck. Towards a Deeper Understanding of Trade-offs Using Multi-objective Evolutionary Algorithms, in Cecilia Di Chio et al. (editors), Applications of Evolutionary Computation, EvoApplications 2012: EvoCOMNET, EvoCOMPLEX, EvoFIN, EvoGAMES, EvoHOT, EvoIASP, EvoNUM, EvoPAR, EvoRISK, EvoSTIM, and EvoSTOC, pp. 396--405, Springer. Lecture Notes in Computer Science Vol. 7248, Málaga, Spain, April 11-13, 2012.
  882. Pradyumn Kumar Shukla and Marlon Alexander Braun. Indicator Based Search in Variable Orderings: Theory and Algorithms, in Robin C. Purshouse, Peter J. Fleming, Carlos M. Fonseca, Salvatore Greco and Jane Shaw (editors), Evolutionary Multi-Criterion Optimization, 7th International Conference, EMO 2013, pp. 66--80, Springer. Lecture Notes in Computer Science Vol. 7811, Sheffield, UK, March 19-22, 2013.
  883. Pradyumn Kumar Shukla, Marlon Alexander Braun and Hartmut Schmeck. Theory and Algorithms for Finding Knees, in Robin C. Purshouse, Peter J. Fleming, Carlos M. Fonseca, Salvatore Greco and Jane Shaw (editors), Evolutionary Multi-Criterion Optimization, 7th International Conference, EMO 2013, pp. 156--170, Springer. Lecture Notes in Computer Science Vol. 7811, Sheffield, UK, March 19-22, 2013.
  884. Pradyumn Kumar Shukla, Michael Emmerich and André Deutz. A Theoretical Analysis of Curvature Based Preference Models, in Robin C. Purshouse, Peter J. Fleming, Carlos M. Fonseca, Salvatore Greco and Jane Shaw (editors), Evolutionary Multi-Criterion Optimization, 7th International Conference, EMO 2013, pp. 367--382, Springer. Lecture Notes in Computer Science Vol. 7811, Sheffield, UK, March 19-22, 2013.
  885. Eric V. Siegel and Alexander D. Chaffee. Genetically Optimizing the Speed of Programs evolved to Play Tetris. In Peter J. Angeline and Kenneth E. Kinnear, editors, Advances in Genetic Programming 2, pages 279-298. MIT Press, 1996.
  886. Karthik Sindhya, Kalyanmoy Deb and Kaisa Miettinen. A Local Search Based Evolutionary Multi-objective Optimization Approach for Fast and Accurate Convergence, in Günter Rudolph, Thomas Jansen, Simon Lucas, Carlo Poloni and Nicola Beume (editors), Parallel Problem Solving from Nature--PPSN X, pp. 815--824, Springer, Lecture Notes in Computer Science Vol. 5199, Dortmund, Germany, September 2008.
  887. Ankur Sinha and Kalyanmoy Deb. Bilevel Multi-Objective Optimization and Decision Making, in El-Ghazali Talbi (editor), {\em Metaheuristics for Bi-level Optimization}, Chapter 9, pp. 247--284, Springer, Studies in Computational Intelligence Vol. 482, Berlin, Germany, 2013, ISBN 978-3-642-37837-9.
  888. Hemant K. Singh, Amitay Isaacs, Tapabrata Ray and Warren Smith A Study on the Performance of Substitute Distance Based Approaches for Evolutionary Many Objective Optimization, in Xiaodong Li, Michael Kirley, Mengjie Zhang, David G. Green, Victor Ciesielski, Hussein A. Abbass, Zbigniew Michalewicz, Tim Hendtlass, Kalyanmoy Deb, Kay Chen Tan, Jürgen Branke and Yuhui Shi (editors), Simulated Evolution and Learning, 7th International Conference, SEAL 2008, pp. 401--410, Springer. Lecture Notes in Computer Science Vol. 5361, Melbourne, Australia, December 7-10, 2008.
  889. Adam Slowik. Evolutionary Multi-objective Optimization of Personal Computer Hardware Configurations, in Leszek Rutkowski, Marcin Korytkowski, Rafa Scherer, Ryszard Tadeusiewicz, Lofti A. Zadeh and Jacek M. Zurada (editors), Swarm and Evolutionary Computation, International Symposia, SIDE 2012 and EC 2012, pp. 359--367, Springer. Lecture Notes in Computer Science Vol. 7269, Zakopane, Poland, April 29-May 3, 2012.
  890. Yves De Smet and Stefan Eppe. Multicriteria Relational Clustering: The Case of Binary Outranking Matrices, in Matthias Ehrgott, Carlos M. Fonseca, Xavier Gandibleux, Jin-Kao Hao and Marc Sevaux (editors), Evolutionary Multi-Criterion Optimization. 5th International Conference, EMO 2009, pp. 380--392, Springer. Lecture Notes in Computer Science Vol. 5467, Nantes, France, April 2009.
  891. Guido F. Smits and Mark Kotanchek. Pareto-Front Exploitation in Symbolic Regression, in Una-May O'Reilly, Tina Yu, Rick Riolo and Bill Worzel (editors), Genetic Programming Theory and Practice II, pp. 283--299, Springer, New York, USA, 2005.
  892. Guido Smits, Arthur Kordon, Katherine Vladislavleva, Elsa Jordaan and Mark Kotanchek. Variable Selection in Industrial Datasets using Pareto Genetic Programming, in Tina Yu, Rick Riolo and Bill Worzel (editors), Genetic Programming Theory and Practice III, pp. 79--92, Springer, New York, USA, 2006.
  893. Omar Soliman, Lam T. Bui and Hussein Abbass. A Memetic Coevolutionary Multi-Objective Differential Evolution Algorithm, in Chi-Keong Goh, Yew-Soon Ong, and Kay Chen Tan (editors), Multi-Objective Memetic Algorithms, chapter 17, pp. 369--388, Springer, Studies in Computational Intelligence, Vol. 171, Berlin, Germany, 2009. ISBN 978-3-540-88050-9.
  894. Wenbin Song. Multiobjective Memetic Algorithm and Its Application in Robust Airfoil Shape Optimization, in Chi-Keong Goh, Yew-Soon Ong and Kay Chen Tan (editors), Multi-Objective Memetic Algorithms, chapter 18, pp. 389--402, Springer, Studies in Computational Intelligence, Vol. 171, Berlin, Germany, 2009. ISBN 978-3-540-88050-9.
  895. Baowei Song, Qifeng Zhu and Zhanyi Liu. Research on Multi-objective Optimization Design of the UUV Shape Based on Numerical Simulation, in Ying Tan, Yuhui Shi and Kay Chen Tan (editors), Advances in Swarm Intelligence, First International Conference, ICSI 2010, pp. 628--635, Springer. Lecture Notes in Computer Science Vol. 6145, Beijing, China, June 12-15, 2010.
  896. Banu Soylu and Murat Köksalan. An Evolutionary Algorithm for the Multi-objective Multiple Knapsack Problem. in Yong Shi, Shouyang Wang, Yi Peng, Jianping Li and Yong Zeng, (editors), Cutting-Edge Research Topics on Multiple Criteria Decision Making (MCDM'2009), pp. 1--8, Springer, Communications in Computer and Information Science, Vol. 35, Heidelberg, Germany, 2009.
  897. Dipti Srinivasan and Tian Hou Seow. Particle Swarm Inspired Evolutionary Algorithm (PS-EA) for Multi-Criteria Optimization Problems, in Ajith Abraham, Lakhmi Jain and Robert Goldberg (editors), Evolutionary Multiobjective Optimization. Theoretical Advances and Applications, pp. 147--165, Springer, USA, 2005.
  898. Kamal Srivastava, Sanjay Srivastava, Bhupendra. K. Pathak and Kalyanmoy Deb. Discrete Time-Cost Tradeoff with a Novel Hybrid Meta-Heuristic. in Matthias Ehrgott, Boris Naujoks, Theodor J. Stewart and Jyrki Wallenius, (editors), Multiple Criteria Decision Making for Sustainable Energy and Transportation Systems, pp. 177--188, Springer, Lecture Notes in Economics and Mathematical Systems Vol. 634, Heidelberg, Germany, 2010.
  899. Theodor Stewart, Oliver Bandte, Heinrich Braun, Nirupam Chakraborti, Matthias Ehrgott, Mathias Göbelt, Yaochu Jin, Hirotaka Nakayama, Silvia Poles and Danilo Di Stefano. Real-World Applications of Multiobjective Optimization, in Jürgen Branke, Kalyanmoy Deb, Kaisa Miettinen and Roman Slowinski (editors), Multiobjective Optimization. Interactive and Evolutionary Approaches, pp. 285--327, Springer. Lecture Notes in Computer Science Vol. 5252, Berlin, Germany, 2008.
  900. Catalin Stoean, Mike Preuss, Ruxandra Stoean and Dumitru Dumitrescu. EA-Powered Basin Number Estimation by Means of Preservation and Exploration, in Günter Rudolph, Thomas Jansen, Simon Lucas, Carlo Poloni and Nicola Beume (editors), Parallel Problem Solving from Nature--PPSN X, pp. 569--578, Springer, Lecture Notes in Computer Science Vol. 5199, Dortmund, Germany, September 2008.
  901. Constantinos Stylianou and Andreas S. Andreou. A Multi-objective Genetic Algorithm for Software Development Team Staffing Based on Personality Types, in Lazaros Iliadis, Ilias Maglogiannis and Harris Papadopoulos (editors), Artificial Intelligence Applications and Innovations, 8th IFIP WG 12.5 International Conference, AIAI 2012, pp. 37--47, Springer. IFIP Advances in Information and Communication Technology Vol. 381, Halkidiki, Greece, September 27-30, 2012.
  902. Marcin Studniarski. Stopping Criteria for Genetic Algorithms with Application to Multiobjective Optimization. in Robert Schaefer, Carlos Cotta, Joanna Kolodziej and Günter Rudolph, (editors), Parallel Problem Solving from Nature--PPSN XI, 11th International Conference, Proceedings, Part I, pp. 697--706, Springer, Lecture Notes in Computer Science Vol. 6238, Kraków, Poland, September, 2010.
  903. Mihai Suciu, Denis Pallez, Marcel Cremene and Dumitru Dumitrescu. Adaptive MOEA/D for QoS-Based Web Service Composition, in Martin Middendorf and Christian Blum (editors), Evolutionary Computation in Combinatorial Optimization, 13th European Conference, EvoCOP 2013, pp. 73--84, Springer. Lecture Notes in Computer Science Vol. 7832, Vienna, Austria, April 3-5, 2013.
  904. Mihai Suciu, Noemi Gasko, Rodica Ioana Lung and D. Dumitrescu. Nash Equilibria Detection for Discrete-Time Generalized Cournot Dynamic Oligopolies, in German Terrazas, Fernando E.B. Otero and Antonio D. Masegosa (editors), Nature Inspired Cooperative Strategies for Optimization (NICSO 2013), Learning, Optimization and Interdisciplinary Applications, pp. 343--354, Springer. Studies in Computational Intelligence Vol. 512, Switzerland, 2014.
  905. Thorsten Suttorp and Christian Igel. Multi-Objective Optimization of Support Vector Machines, in Yaochu Jin (Editor), Multi-Objective Machine Learning, pp. 199--220, Springer. Studies in Computational Intelligence, Volume 16, Berlin, 2006.
  906. Ewa Szlachcic and Waldemar Zubik. Parallel Distributed Genetic Algorithm for Expensive Multi-Objective Optimization Problems, in Roberto Moreno-Díaz, Franz Pichler and Alexis Quesada-Arencibia (editors), Computer Aided Systems Theory - EUROCAST 2009, 12th International Conference, pp. 938--946, Springer. Lecture Notes in Computer Science Vol. 5717, Las Palmas de Gran Canaria, Spain, February 15-20, 2009.
  907. T

  908. Arita Takahashi and Arkady Borisov. Decision strategies in evolutionary optimization, in Bernd Reusch (editor), Computational Intelligence: Theory and Applications, International Conference, 7th Fuzzy Days, pp. 345--356, Springer. Lecture Notes in Computer Science Vol. 2206, Dortmund, Germany, October 2001.
  909. Ricardo H. C. Takahashi, Frederico G. Guimaraães, Elizabeth F. Wanner and Eduardo G. Carrano. Feedback-Control Operators for Evolutionary Multiobjective Optimization, in Matthias Ehrgott, Carlos M. Fonseca, Xavier Gandibleux, Jin-Kao Hao and Marc Sevaux (editors), Evolutionary Multi-Criterion Optimization. 5th International Conference, EMO 2009, pp. 66--80, Springer. Lecture Notes in Computer Science Vol. 5467, Nantes, France, April 2009.
  910. Shingo Takeuchi and Kazuhiro Saitou. Design for Product Embedded Disassembly, in Tina Yu, Lawrence Davis, Cem Baydar and Rajkumar Roy (editors), Evolutionary Computation in Practice, pp. 9--39, Springer, 2008, ISBN 978-3-540-75770-2.
  911. El-Ghazali Talbi, Malek Rahoual, Mohamed Hakim Mabed and Clarisse Dhaenens. A Hybrid Evolutionary Approach for Multicriteria Optimization Problems: Application to the Flow Shop. In Eckart Zitzler, Kalyanmoy Deb, Lothar Thiele, Carlos A. Coello Coello and David Corne, editors, First International Conference on Evolutionary Multi-Criterion Optimization, pages 416-428. Springer-Verlag. Lecture Notes in Computer Science No. 1993, 2001.
  912. El-Ghazali Talbi, Sanaz Mostaghim, Tatsuya Okabe, Hisao Ishibuchi, Günter Rudolph and Carlos A. Coello Coello. Parallel Approaches for Multi-objective Optimization, in Jürgen Branke, Kalyanmoy Deb, Kaisa Miettinen and Roman Slowinski (editors), Multiobjective Optimization. Interactive and Evolutionary Approaches, pp. 349--372, Springer, Lecture Notes in Computer Science Vol. 5252, Berlin, Germany, 2008.
  913. K.C. Tan, T.H. Lee and E.F. Khor. Incrementing Multi-Objective Evolutionary Algorithms: Performance Studies and Comparisons. In Eckart Zitzler, Kalyanmoy Deb, Lothar Thiele, Carlos A. Coello Coello and David Corne, editors, First International Conference on Evolutionary Multi-Criterion Optimization, pages 111-125. Springer-Verlag. Lecture Notes in Computer Science No. 1993, 2001.
  914. K.C. Tan and Y. Li. Automating Control System Design via a Multiobjective Evolutionary Algorithm, in Carlos A. Coello Coello and Gary B. Lamont (editors), Applications of Multi-Objective Evolutionary Algorithms, pp. 155--175, World Scientific, Singapore, 2004.
  915. Tse Guan Tan, Hui Keng Lau and Jason Teo. Cooperative Versus Competitive Coevolution for Pareto Multiobjective Optimization, in Kang Li, Minrui Fei, George W. Irwin, and Shiwei Ma (editors), Bio-Inspired Computational Intelligence and Applications. International Conference on Life System Modeling and Simulation (LSMS 2007), pp. 63--72, Springer, Lecture Notes in Computer Science Vol. 4688, Shanghai, China, September 14-17, 2007. ISBN 978-3-540-74768-0.
  916. Tse Guan Tan and Jason Teo. Evolving Opposition-Based Pareto Solutions: Multiobjective Optimization Using Competitive Coevolution, in H. R. Tizhoosh and M. Ventresca (editors), Oppositional Concepts in Computational Intelligence, pp. 161-206, Springer, Studies in Computational Intelligence Vol. 155, 2008.
  917. Kay Chen Tan and Chi Keong Goh. Handling Uncertainties in Evolutionary Multi-Objective Optimization, in Jacek M. Zurada, Gary G. Yen and Jun Wang (editors), Computational Intelligence: Research Frontiers. IEEE World Congress on Computational Intelligence (WCCI'2008), pp. 262--292, Springer, Lecture Notes in Computer Science Vol. 5050, Hong Kong, China, June 1-6 2008. ISBN 978-3-540-68858-7.
  918. Kay Chen Tan, Ko Poh Phang and Ying Jie Yang. Feed Optimization for Fluidized Catalytic Cracking using a Multi-Objective Evolutionary Algorithm, in Rangaiah Gade Pandu (editor), Multi-Objective Optimization Techniques and Applications in Chemical Engineering, chapter 9, pp. 277--300, World Scientific, Singapore, 2009, ISBN 978-981-283-651-9.
  919. Tse Guan Tan and Jason Teo. Improving the Performance of Multiobjective Evolutionary Optimization Algorithms Using Coevolutionary Learning, in Raymond Chiong (Editor), Nature-Inspired Algorithms for Optimisation, pp. 457--487, Springer, Berlin, ISBN 978-3-642-00266-3, 2009.
  920. Kar Bin Tan, Jason Teo, Kim On Chin and Patricia Anthony. An Evolutionary Multi-objective Optimization Approach to Computer Go Controller Synthesis, in Patricia Anthony, Mitsuru Ishizuka and Dickson Lukose (editors), PRICAI 2012: Trends in Artificial Intelligence, 12th Pacific Rim International Conference on Artificial Intelligence, pp. 801--806, Springer. Lecture Notes in Artificial Intelligence Vol. 7458, Kuching, Malaysia, September 3-7, 2012.
  921. Emilia Tantar, Oliver Schütze, José Rui Figueira, Carlos A. Coello Coello and El-Ghazali Talbi, Computing and Selecting ε-Efficient Solutions of {0,1}-Knapsack Problems, in Matthias Ehrgott, Boris Naujoks, Theodor J. Stewart and Jyrki Wallenius (editors), Multiple Criteria Decision Making for Sustainable Energy and Transportation Systems, pp. 379--389, Springer, Lecture Notes in Economics and Mathematical Systems Vol. 634, Heidelberg, Germany, 2010.
  922. Tomoaki Tatsukawa, Taku Nonomura, Akira Oyama and Kozo Fujii. A New Multiobjective Genetic Programming for Extraction of Design Information from Non-dominated Solutions, in Robin C. Purshouse, Peter J. Fleming, Carlos M. Fonseca, Salvatore Greco and Jane Shaw (editors), Evolutionary Multi-Criterion Optimization, 7th International Conference, EMO 2013, pp. 528--542, Springer. Lecture Notes in Computer Science Vol. 7811, Sheffield, UK, March 19-22, 2013.
  923. Jürgen Teich. Pareto-Front Exploration with Uncertain Objectives. In Eckart Zitzler, Kalyanmoy Deb, Lothar Thiele, Carlos A. Coello Coello and David Corne, editors, First International Conference on Evolutionary Multi-Criterion Optimization, pages 314-328. Springer-Verlag. Lecture Notes in Computer Science No. 1993, 2001.
  924. Jason Teo and Hussein A. Abbass. Evolutionary Multi-Objective Robotics: Evolving a Physically Simulated Quadruped Using the PDE Algorithm, in Kay Chen Tan, Meng Hiot Lim, Xin Yao and Lipo Wang, (editors), Recent Advances in Simulated Evolution and Learning, pp. 466-485, World Scientific, Singapore, 2004.
  925. Jason Teo, Lynnie D. Neri, Minh H. Nguyen and Hussein A. Abbass. Walking with EMO: Multi-Objective Robotics for Evolving Two, Four and Six--Legged Locomotion, in Lam Thu Bui and Sameer Alam (editors), Multi-Objective Optimization in Computational Intelligence: Theory and Practice, pp. 300--332, Information Science Reference, Hershey, PA, USA, 2008, ISBN 978-1-59904-498-9.
  926. Takao Terano. Exploring the Vast Parameter Space of Multi-Agent Based Simulation, in Luis Antunes and Keiki Takadama (editors), Multi-Agent-Based Simulation VII, International Workshop, MABS 2006, pp. 1--14, Springer. Lecture Notes in Artificial Intelligence Vol. 4442, Hakodate, Japan, May 8, 2007.
  927. Jules Thibault. Net Flow and Rough Sets: Two Methods for Ranking the Pareto Domain, in Rangaiah Gade Pandu (editor), Multi-Objective Optimization Techniques and Applications in Chemical Engineering, chapter 7, pp. 189--236, World Scientific, Singapore, 2009, ISBN 978-981-283-651-9.
  928. Spencer Angus Thomas and Yaochu Jin. Single and Multi-objective in Silico Evolution of Tunable Genetic Oscillators, in Robin C. Purshouse, Peter J. Fleming, Carlos M. Fonseca, Salvatore Greco and Jane Shaw (editors), Evolutionary Multi-Criterion Optimization, 7th International Conference, EMO 2013, pp. 696--709, Springer. Lecture Notes in Computer Science Vol. 7811, Sheffield, UK, March 19-22, 2013.
  929. Jing Tian and Lincheng Shen. A Multi-objective Evolutionary Algorithm for Multi-UAV Cooperative Reconnaissance Problem, in Irwin King, Jun Wang, Laiwan Chan and DeLiang L. Wang (editors), Neural Information Processing. 13th International Conference (ICONIP 2006), pp. 900--909, Springer, Lecture Notes in Computer Science, Vol. 4234, Hong Kong, China, October 3-6 2006. ISBN 3-540-46484-0.
  930. Zhigang Tian, Ming J. Zuo and Hong-Zhong Huang. Optimal Redundancy Allocation of Multi-State Systems with Genetic Algorithms, in Gregory Levitin (editor), Computational Intelligence in Reliability Engineering. Evolutionary Techniques in Reliability Analysis and Optimization, pp. 191--214, Springer, Heidelberg, 2007.
  931. Ashutosh Tiwari, Kostas Vergidis and Rajkumar Roy. Evolutionary Optimization of Business Process Designs, in Keshav P. Dahal, Kay Chen Tan and Peter I Cowling (editors), Evolutionary Scheduling, pp. 513--541, Springer, Studies in Computational Intelligence (SCI), Berlin, 2007, ISBN 3-540-48582-1.
  932. Andrea Toffolo. Evolutionary Multi-Objective Optimization in Energy Conversion Systems: From Component Detail to System Configuration, in Lam Thu Bui and Sameer Alam (editors), Multi-Objective Optimization in Computational Intelligence: Theory and Practice, pp. 333--363, Information Science Reference, Hershey, PA, USA, 2008, ISBN 978-1-59904-498-9.
  933. Augusto de Almeida Prado G. Torácio. Multiobjective Particle Swarm Optimization in Classification-Rule Learning. in Carlos Artemio Coello Coello, Satchidananda Dehuri and Susmita Ghosh, (editors), Swarm Intelligence for Multi-objective Problems in Data Mining, Chapter 3, pp. 37--64, Springer. Studies in Computational Intelligence. Vol. 242, Berlin, 2009.
  934. Heike Trautmann, Uwe Ligges, Jörn Mehnen and Mike Preuss. A Convergence Criterion for Multiobjective Evolutionary Algorithms Based on Systematic Statistical Testing, in Günter Rudolph, Thomas Jansen, Simon Lucas, Carlo Poloni and Nicola Beume (editors), Parallel Problem Solving from Nature--PPSN X, pp. 825--836, Springer, Lecture Notes in Computer Science Vol. 5199, Dortmund, Germany, September 2008.
  935. Heike Trautmann, Günter Rudolph, Christian Dominguez-Medina and Oliver Schütze. Finding Evenly Spaced Pareto Fronts for Three-Objective Optimization Problems, in Oliver Schütze, Carlos A. Coello Coello, Alexandru-Adrian Tantar, Emilia Tantar, Pascal Bouvry, Pierre Del Moral and Pierrick Legrand (editors), EVOLVE - A Bridge between Probability, Set Oriented Numerics, and Evolutionary Computation II, pp. 89--105, Springer, Advances in Intelligent Systems and Computing Vol. 175, Berlin, Germany, 2012, ISBN 978-3-642-31519-0 .
  936. Praveen K. Tripathi, Sanghamitra Bandyopadhyay and Sankar K. Pal. Incorporating Distance Domination in Multiobjective Evolutionary Algorithm. in Sankar K. Pal, Sanghamitra Bandyopadhyay, and Sambhunath Biswas, (editors), Pattern Recognition and Machine Intelligence, pp. 684--689, Springer, Lecture Notes in Computer Science, Vol. 3776, Kolkata, India, 2005.
  937. Praveen Kumar Tripathi, Sanghamitra Bandyopadhyay and Sankar Kumar Pal. An Adaptive Multi-Objective Particle Swarm Optimization algorithm with Constraint Handling, in Bijaya Ketan Panigrahi, Yuhui Shi and Meng-Hiot Lim (editors), Handbook of Swarm Intelligence. Concepts, Principles and Applications, pp. 221--239, Springer-Verlag, Belin, Germany, 2011. ISBN 978-3-642-17389-9 .
  938. Giuseppe A. Trunfio. Exploiting Spatio-temporal Data for the Multiobjective Optimization of Cellular Automata Models, in Emilio Corchado, Hujun Yin, Vicente J. Botti and Colin Fyfe (editors), Intelligent Data Engineering and Automated Learning - IDEAL 2006, 7th International Conference, pp. 81-89, Springer, Lecture Notes in Computer Science Vol. 4224, Burgos, Spain, September 20-23 2006.
  939. Wilburn W.P. Tsang and Henry Y.K. Lau. Clustering-Based Multi-objective Immune Optimization Evolutionary Algorithm, in Carlos A. Coelo Coello, Julie Greensmith, Natalio Krasnogor, Pietro Liò, Giuseppe Nicosia and Mario Pavone (Eds), Artificial Immune Systems, 11th International Conference, ICARIS 2012, pp. 72--85, Springer, Lecture Notes in Computer Science Vol. 7597, Taormina, Italy, August 28-31, 2012, ISBN 978-3-642-33756-7 .
  940. Theodore Tsekeris, Loukas Dimitriou and Antony Stathopoulos. Combined Genetic Computation of Microscopic Trip Demand in Urban Networks, in Andreas Fink and Franz Rothlauf (editors), Advances in Computational Intelligence in Transport, Logistics and Supply Chain Management, pp. 3--21, Springer, Studies in Computational Intelligence Vol. 144, 2008.
  941. Christos Tsotskas, Timoleon Kipouros and Mark Savill. Biobjective Optimisation of Preliminary Aircraft Trajectories, in Robin C. Purshouse, Peter J. Fleming, Carlos M. Fonseca, Salvatore Greco and Jane Shaw (editors), Evolutionary Multi-Criterion Optimization, 7th International Conference, EMO 2013, pp. 741--755, Springer. Lecture Notes in Computer Science Vol. 7811, Sheffield, UK, March 19-22, 2013.
  942. Ching-Shih Tsou, Shih-Chia Chang and Po-Wu Lai. Using Crowding Distance to Improve Multi-Objective PSO with Local Search, in Felix T.S. Chan and Manoj Kumar Tiwari (editors), Swarm Intelligence. Focus on Ant and Particle Swarm Optimization, pp. 77--86, I-Tech Education and Publising, Croatia, December 2007.
  943. Cem Celal Tutum and Jesper Hattel. State-of-the-Art Multi-Objective Optimisation of Manufacturing Processes Based on Thermo-Mechanical Simulations, in Lihui Wang, Amos H.C. Ng and Kalyanmoy Deb (editors), Multi-objective Evolutionary Optimisation for Product Design and Manufacturing, Chapter 3, pp. 71--133, Springer, London, UK, 2011, ISBN 978-0-85729-617-7.
  944. Daniel Tuyttens, Jacques Teghem and Nasser El-Sherbeny. A Particular Multiobjective Vehicle Routing Problem Solved by Simulated Annealing, in Xavier Gandibleux, Marc Sevaux, Kenneth Sörensen and Vincent T'kindt (editors), Metaheuristics for Multiobjective Optimisation, pp. 133--152, Springer. Lecture Notes in Economics and Mathematical Systems Vol. 535, Berlin, 2004.
  945. U

  946. Tamara Ulrich, Johannes Bader and Lothar Thiele. Defining and Optimizing Indicator-Based Diversity Measures in Multiobjective Search. in Robert Schaefer, Carlos Cotta, Joanna Kolodziej and Günter Rudolph (editors) Parallel Problem Solving from Nature--PPSN XI, 11th International Conference, Proceedings, Part I, pp. 707--717, Springer, Lecture Notes in Computer Science Vol. 6238, Kraków, Poland, September, 2010.
  947. V

  948. Vincent van der Goes, Ofer M. Shir and Thomas Bäck. Niche Radius Adaptation with Asymmetric Sharing, in Günter Rudolph, Thomas Jansen, Simon Lucas, Carlo Poloni and Nicola Beume (editors), Parallel Problem Solving from Nature--PPSN X, pp. 195--204, Springer, Lecture Notes in Computer Science Vol. 5199, Dortmund, Germany, September 2008.
  949. I.O. Vardiambasis, N. Tzioumakis and T. Melesanaki. Smart Antenna Design Using Multi-Objective Genetic Algorithms, in Nikos Mastorakis, Valeri Mladenov and Vassiliki T. Kontargyri (editors), Proceedings of the European Computing Conference, pp. 683--688, Springer. Lecture Notes in Electrical Engineering Vol. 27, 2009.
  950. Massimiliano Vasile. Hybrid Behavioral-Based Multiobjective Space Trajectory Optimization, in Chi-Keong Goh, Yew-Soon Ong and Kay Chen Tan (editors), Multi-Objective Memetic Algorithms, chapter 11, pp. 231--253, Springer, Studies in Computational Intelligence, Vol. 171, Berlin, Germany, 2009. ISBN 978-3-540-88050-9.
  951. Massimiliano Vasile and Nicolas Croisard. Robust Preliminary Space Mission Design under Uncertainty. in Yoel Tenne and Chi-Keong Goh, (editors), Computational Intelligence in Expensive Optimization Problems, pp. 543--570, Springer, Berlin, Germany, 2010. ISBN 978-3-642-10700-9.
  952. Vassilios Vassiliadis and Georgios Dounias. Nature-inspired intelligence for Pareto optimality analysis in portfolio optimization, in Michael Doumpos and Evangelos Grigoroudis (editors), Multicriteria Decision Aid and Artificial Intelligence: Links, Theory and Applications, Chapter 14, pp. 335--345, John Wiley & Sons, Chichester, United Kingdom, February 18, 2013, ISBN 978-1-119-97639-4.
  953. Igor Vatolkin, Anil Nagathil, Wolfgang Theimer and Rainer Martin. Performance of Specific vs. Generic Feature Sets in Polyphonic Music Instrument Recognition, in Robin C. Purshouse, Peter J. Fleming, Carlos M. Fonseca, Salvatore Greco and Jane Shaw (editors), Evolutionary Multi-Criterion Optimization, 7th International Conference, EMO 2013, pp. 587--599, Springer. Lecture Notes in Computer Science Vol. 7811, Sheffield, UK, March 19-22, 2013.
  954. Apolinar Velarde, Eunice Ponce de León, Elva Diaz and Alejandro Padilla. Planning and Allocation Tasks in a Multicomputer System as a Multi-objective Problem, in Michael Emmerich, André Deutz, Oliver Schütze, Thomas Bäck, Emilia Tantar, Alexandru-Adrian Tantar, Pierre del Moral, Pierrick Legrand, Pascal Bouvry and Carlos Coello Coello (editors), EVOLVE - A Bridge between Probability, Set Oriented Numerics, and Evolutionary Computation IV, pp. 225--244, Springer, Advances in Intelligent Systems and Computing Vol. 227, Heidelberg, Germany, July 10-13, 2013, ISBN 978-3-319-01127-7.
  955. Neelakantam V. Venkatarayalu and Tapabrata Ray. Application of Multiobjective Optimization in Electromagnetic Design, in Nadia Nedjah and Luiza de Macedo Mourelle (editors), Real-World Multi-Objective System Engineering, pp. 77--100, Nova Science Publishers, New York, 2005.
  956. Susana M. Vieira, João M. C. Sousa and Thomas A. Runkler. Multi-Criteria Ant Feature Selection Using Fuzzy Classifiers. in Carlos Artemio Coello Coello, Satchidananda Dehuri, and Susmita Ghosh, (editors), Swarm Intelligence for Multi-objective Problems in Data Mining, chapter 2, pp. 19--36, Springer. Studies in Computational Intelligence. Vol. 242, Berlin, 2009.
  957. Céline Villa, Eric Lozinguez and Raphaël Labayrade. Multi-objective Optimization under Uncertain Objectives: Application to Engineering Design Problem, in Robin C. Purshouse, Peter J. Fleming, Carlos M. Fonseca, Salvatore Greco and Jane Shaw (editors), Evolutionary Multi-Criterion Optimization, 7th International Conference, EMO 2013, pp. 796--810, Springer. Lecture Notes in Computer Science Vol. 7811, Sheffield, UK, March 19-22, 2013.
  958. Thomas Voβ, Nikolaus Hansen and Christian Igel. Recombination for Learning Strategy Parameters in the MO-CMA-ES, in Matthias Ehrgott, Carlos M. Fonseca, Xavier Gandibleux, Jin-Kao Hao and Marc Sevaux (editors), Evolutionary Multi-Criterion Optimization. 5th International Conference, EMO 2009, pp. 155--168, Springer. Lecture Notes in Computer Science Vol. 5467, Nantes, France, April 2009.
  959. Thomas Voβ, Heike Trautmann and Christian Igel. New Uncertainty Handling Strategies in Multi-objective Evolutionary Optimization. in Robert Schaefer, Carlos Cotta, Joanna Kolodziej, and Günter Rudolph, (editors), Parallel Problem Solving from Nature--PPSN XI, 11th International Conference, Proceedings, Part II, pp. 260--269, Springer, Lecture Notes in Computer Science Vol. 6239, Kraków, Poland, September, 2010.
  960. W

  961. Tobias Wagner, Heike Trautmann and Boris Naujoks. OCD: Online Convergence Detection for Evolutionary Multi-Objective Algorithms Based on Statistical Testing, in Matthias Ehrgott, Carlos M. Fonseca, Xavier Gandibleux, Jin-Kao Hao and Marc Sevaux (editors), Evolutionary Multi-Criterion Optimization. 5th International Conference, EMO 2009, pp. 198--215, Springer. Lecture Notes in Computer Science Vol. 5467, Nantes, France, April 2009.
  962. Tobias Wagner, Michael Emmerich, André Deutz and Wolfgang Ponweiser. On Expected-Improvement Criteria for Model-Based Multi-objective Optimization. in Robert Schaefer, Carlos Cotta, Joanna Kolodziej and Günter Rudolph (editors) Parallel Problem Solving from Nature--PPSN XI, 11th International Conference, Proceedings, Part I, pp. 718--727, Springer, Lecture Notes in Computer Science Vol. 6238, Kraków, Poland, September, 2010.
  963. Tobias Wagner, Heike Trautmann and Dimo Brockhoff. Preference Articulation by Means of the R2 Indicator, in Robin C. Purshouse, Peter J. Fleming, Carlos M. Fonseca, Salvatore Greco and Jane Shaw (editors), Evolutionary Multi-Criterion Optimization, 7th International Conference, EMO 2013, pp. 81--95, Springer. Lecture Notes in Computer Science Vol. 7811, Sheffield, UK, March 19-22, 2013.
  964. Jiachuan Wang and Janis P. Terpenny. Interactive Preference Incorporation in Evolutionary Engineering Design, in Yaochu Jin (editor), Knowledge Incorporation in Evolutionary Computation, Springer, pp. 525--543, Berlin Heidelberg, 2005, ISBN 3-540-22902-7 .
  965. Yuping Wang and Chuangyin Dang. Improving Multiobjective Evolutionary Algorithm by Adaptive Fitness and Space Division. in Lipo Wang, Ke Chen and Yew-Soon Ong, (editors), Advances in Natural Computation. First International Conference, ICNC 2005, pp. 392--398, Springer, Lecture Notes in Computer Science, Vol. 3612, Changsha, China, 2005.
  966. Hanli Wang, Sam Kwong, Yaochu Jin and Chi-Ho Tsang. Agent Based Multi-Objective Approach to Generating Interpretable Fuzzy Systems, in Yaochu Jin (Editor), Multi-Objective Machine Learning, pp. 339--364, Springer. Studies in Computational Intelligence, Volume 16, Berlin, 2006.
  967. JianWei Wang, Jianming Zhang and Xiaopeng Wei. Evolutionary Multi-objective Optimization Algorithm with Preference for Mechanical Design, in Daniel S. Yeung, Zhi-Qiang Liu, Xizhao Wang and Hong Yan (editors), Advances in Machine Learning and Cybernetics, 4th International Conference, ICMLC 2005, pp. 497-506, Springer, Lecture Notes in Computer Science Vol. 3930, Guangzhou, China, August 2006.
  968. Yujia Wang and Yupu Yang. Handling Multiobjective Problems with a Novel Interactive Multi-Swarm PSO, in De-Shuang Huang, Donald C. Wunsch II, Daniel S. Levine and Kang-Hyun Jo (editors), Advanced Intelligent Computing Theories and Applications With Aspects of Artificial Intelligence, 4th International Conference on Intelligent Computing, ICIC'2008, pp. 575--582, Springer, Lecture Notes in Artificial Intelligence, Vol. 5227, Shanghai, China, September 15-18 2008. ISBN 978-3-540-85983-3.
  969. Lingfeng Wang and Chanan Singh. Risk and Cost Tradeoff in Economic Dispatch Including Wind Power Penetration Based on Multi-Objective Memetic Particle Swarm Optimization, in Chi-Keong Goh, Yew-Soon Ong and Kay Chen Tan (editors), Multi-Objective Memetic Algorithms, chapter 10, pp. 209--230, Springer, Studies in Computational Intelligence, Vol. 171, Berlin, Germany, 2009. ISBN 978-3-540-88050-9 .
  970. Zai Wang, Zhenyu Yang, Ke Tang and Xin Yao. Adaptive Differential Evolution for Multi-objective Optimization. in Yong Shi, Shouyang Wang, Yi Peng, Jianping Li and Yong Zeng, (editors), Cutting-Edge Research Topics on Multiple Criteria Decision Making (MCDM'2009), pp. 9--16, Springer, Communications in Computer and Information Science, Vol. 35, Heidelberg, Germany, 2009.
  971. Yan Wang, Jian-Chao Zeng and Ying Tan. An Artificial Physics Optimization Algorithm for Multi-Objective Problems Based on Virtual Force Sorting Proceedings, in Bijaya Ketan Panigrahi, Swagatam Das, Ponnuthurai Nagaratnam Suganthan and Subhransu Sekhar Dash (editors), Swarm, Evolutionary, and Memetic Computing, First International Conference on Swarm, Evolutionary and Memetic Computing, SEMCCO 2010, pp. 615--622, Springer-Verlag. Lecture Notes in Computer Science Vol. 6466, Chennai, India, December 16-18, 2010.
  972. Lingling Wang and Yuanxiang Li. Dynamical Multi-objective Optimization Using Evolutionary Algorithm for Engineering, in Zhihua Cai, Chengyu Hu, Zhuo Kang and Yong Liu (editors), Advances in Computation and Intelligence, 5th International Symposium, ISICA 2010, pp. 304--311, Springer. Lecture Notes in Computer Science Vol. 6382, Wuhan, China, October 22-24, 2010.
  973. Xianpeng Wang and Lixin Tang. A PSO-Based Hybrid Multi-Objective Algorithm for Multi-Objective Optimization Problems, in Ying Tan, Yuhui Shi, Yi Chai and Guoyin Wang (editors), Advances in Swarm Intelligence, Second International Conference, ICSI 2011, pp. 26--33, Springer. Lecture Notes in Computer Science Vol. 6729, Chongqing, China, June 12-15, 2011.
  974. Ling Wang, Wei Ye, Xiping Fu and Muhammad Ilyas Menhas. A Modified Multi-objective Binary Particle Swarm Optimization Algorithm, in Ying Tan, Yuhui Shi, Yi Chai and Guoyin Wang (editors), Advances in Swarm Intelligence, Second International Conference, ICSI 2011, pp. 41--48, Springer. Lecture Notes in Computer Science Vol. 6729, Chongqing, China, June 12-15, 2011.
  975. Binfang Wang and A.Y.C. Nee. A Setup Planning Approach Considering Tolerance Cost Factors, in Lihui Wang, Amos H.C. Ng and Kalyanmoy Deb (editors), Multi-objective Evolutionary Optimisation for Product Design and Manufacturing, Chapter 8, pp. 251--277, Springer, London, UK, 2011, ISBN 978-0-85729-617-7.
  976. Rui Wang, Robin C. Purshouse and Peter J. Fleming. “Whatever Works Best for You”- A New Method for a Priori and Progressive Multi-objective Optimisation, in Robin C. Purshouse, Peter J. Fleming, Carlos M. Fonseca, Salvatore Greco and Jane Shaw (editors), Evolutionary Multi-Criterion Optimization, 7th International Conference, EMO 2013, pp. 337--351, Springer. Lecture Notes in Computer Science Vol. 7811, Sheffield, UK, March 19-22, 2013.
  977. Shinya Watanabe and Tomoyuki Hiroyasu. Multi-Objective Rectangular Packing Problem, in Carlos A. Coello Coello and Gary B. Lamont (editors), Applications of Multi-Objective Evolutionary Algorithms, pp. 581--602, World Scientific, Singapore, 2004.
  978. Jingxuan Wei and Yuping Wang. A New Model Based Multi-objective PSO Algorithm, in Yuping Wang, Yiu-ming Cheung and Hailin Liu (editors), Computational Intelligence and Security, International Conference, CIS 2006, pp. 87--94, Springer. Lecture Notes in Computer Science 4456, Guangzhou, China, November 2007.
  979. Thomas Weise and Kurt Geihs. DGPF--An Adaptable Framework for Distributed Multi-Objective Search Algorithms Applied to the Genetic Programming of Sensor Networks, in Bogdan Filipic and Jurij Silc (editors), Bioinspired Optimization Methods and their Applications, pp. 157--166, Jozef Stefan Institute, October 2006.
  980. Thomas Weise, Michael Zapf, Raymond Chiong and Antonio J. Nebro. Why Is Optimization Difficult?, in Raymond Chiong (Editor), Nature-Inspired Algorithms for Optimisation, pp. 1--50, Springer, Berlin, ISBN 978-3-642-00266-3, 2009.
  981. Wei Wen-long, Li Bin and Zhuang Zhen-quan. Multi-objective Q-bit Coding Genetic Algorithm for Hardware-Software Co-synthesis of Embedded Systems, in Tzai-Der Wang, Xiaodong Li, Shu-Heng Chen, Xufa Wang, Hussein Abbass, Hitoshi Iba, Guoliang Chen and Xin Yao (editors), Simulated Evolution and Learning, 6th International Conference, SEAL 2006, pp. 865--872, Springer. Lecture Notes in Computer Science Vol. 4247, Hefei, China, October 2006.
  982. Guo Wenzhong, Chen Guolong, Huang Min and Chen Shuili. A Discrete Particle Swarm Optimization Algorithm for the Multiobjective Permutation Flowshop Sequencing Problem, in Bing-Yuan Cao (editor), Fuzzy Information and Engineering. Proceedings of the Second International Conference of Fuzzy Information and Engineering (ICFIE'2007), pp. 323--331, Springer, Advances in Soft Computing, Vol. 40, Guangzhou, China, May 13-16, 2007. ISBN 978-3-540-71440-8.
  983. Simon Wessing, Nicola Beume, Günter Rudolph and Boris Naujoks. Parameter Tuning Boosts Performance of Variation Operators in Multiobjective Optimization. in Robert Schaefer, Carlos Cotta, Joanna Kolodziej and Günter Rudolph (editors) Parallel Problem Solving from Nature--PPSN XI, 11th International Conference, Proceedings, Part I, pp. 728--737, Springer, Lecture Notes in Computer Science Vol. 6238, Kraków, Poland, September, 2010.
  984. Thomas White and Shan He. An Empirical Comparison of Several Recent Multi-objective Evolutionary Algorithms, in Lazaros Iliadis, Ilias Maglogiannis and Harris Papadopoulos (editors), Artificial Intelligence Applications and Innovations, 8th IFIP WG 12.5 International Conference, AIAI 2012, pp. 48--57, Springer. IFIP Advances in Information and Communication Technology Vol. 381, Halkidiki, Greece, September 27-30, 2012.
  985. W.R.M.U.K. Wickramasinghe and X. Li. Choosing Leaders for Multi-objective PSO Algorithms Using Differential Evolution, in Xiaodong Li, Michael Kirley, Mengjie Zhang, David G. Green, Victor Ciesielski, Hussein A. Abbass, Zbigniew Michalewicz, Tim Hendtlass, Kalyanmoy Deb, Kay Chen Tan, Jürgen Branke and Yuhui Shi (editors), Simulated Evolution and Learning, 7th International Conference, SEAL 2008, pp. 249--258, Springer. Lecture Notes in Computer Science, Vol. 5361, Melbourne, Australia, December 2008.
  986. Matthias Woehrle, Dimo Brockhoff, Tim Hohm and Stefan Bleuler. Investigating Coverage and Connectivity Trade-offs inWireless Sensor Networks: The Benefits of MOEAs. in Matthias Ehrgott, Boris Naujoks, Theodor J. Stewart and Jyrki Wallenius, (editors), Multiple Criteria Decision Making for Sustainable Energy and Transportation Systems, pp. 211--221, Springer, Lecture Notes in Economics and Mathematical Systems Vol. 634, Heidelberg, Germany, 2010.
  987. Jonathan Wright and Heather Loosemore. An Infeasibility Objective for Use in Constrained Pareto Optimization. In Eckart Zitzler, Kalyanmoy Deb, Lothar Thiele, Carlos A. Coello Coello and David Corne, editors, First International Conference on Evolutionary Multi-Criterion Optimization, pages 256-268. Springer-Verlag. Lecture Notes in Computer Science No. 1993, 2001.
  988. Yong Gang Wu and Wei Gu. Study on Improving the Fitness Value of Multi-objective Evolutionary Algorithms. in Yong Shi, Shouyang Wang, Yi Peng, Jianping Li and Yong Zeng, (editors), Cutting-Edge Research Topics on Multiple Criteria Decision Making (MCDM'2009), pp. 243--250, Springer, Communications in Computer and Information Science, Vol. 35, Heidelberg, Germany, 2009.
  989. Yali Wu, Liqing Xu and Jingqian Xue. Improved Multiobjective Particle Swarm Optimization for Environmental/Economic Dispatch Problem in Power System, in Ying Tan, Yuhui Shi, Yi Chai and Guoyin Wang (editors), Advances in Swarm Intelligence, Second International Conference, ICSI 2011, pp. 49--56, Springer. Lecture Notes in Computer Science Vol. 6729, Chongqing, China, June 12-15, 2011.
  990. X

  991. Ying Xiao, Yong-Hua Song and Chen-Ching Liu. An Interactive Compromise Programming-Based Multiobjective Approach to FACTS Control. In Kwang Y. Lee and Mohamed A. El-Sharkawi, (editors), Modern Heuristic Optimization Techniques. Theory and Applications to Power Systems, chapter 18, pp. 501--523. Wiley-Interscience, USA, 2008.
  992. Jing-Xin Xie, Chun-Tian Cheng and Zhen-Hui Ren. An Improved Discrete Immune Network for Multimodal Optimization, in Emilio Corchado, Hujun Yin, Vicente J. Botti and Colin Fyfe (editors), Intelligent Data Engineering and Automated Learning - IDEAL 2006, 7th International Conference, pp. 1079-1086, Springer, Lecture Notes in Computer Science Vol. 4224, Burgos, Spain, September 20-23 2006.
  993. Ming Xu and Zongzhi Wu. Unconstrained Two-Objective Land-Use Planning Based-on NSGA-II for Chemical Industry Park, in Yong Shi, Shouyang Wang, Gang Kou and Jyrki Wallenius (editors), New State of MCDM in the 21st Century Selected Papers of the 20th International Conference on Multiple Criteria Decision Making 2009, pp. 189--197, Springer. Lecture Notes in Economics and Mathematical Systems Vol. 648, Berlin, Germany, 2011.
  994. Y

  995. Toshihiko Yanase and Hitoshi Iba. Evolutionary Multi-Objective Optimization for Biped Walking, in Xiaodong Li, Michael Kirley, Mengjie Zhang, David G. Green, Victor Ciesielski, Hussein A. Abbass, Zbigniew Michalewicz, Tim Hendtlass, Kalyanmoy Deb, Kay Chen Tan, Jürgen Branke and Yuhui Shi (editors), Simulated Evolution and Learning, 7th International Conference, SEAL 2008, pp. 635--644, Springer. Lecture Notes in Computer Science Vol. 5361, Melbourne, Australia, December 7-10, 2008.
  996. Ang Yang, Hussein A. Abbass and Ruhul Sarker. Land Combat Scenario Planning: A Multiobjective Approach, in Tzai-Der Wang, Xiaodong Li, Shu-Heng Chen, Xufa Wang, Hussein Abbass, Hitoshi Iba, Guoliang Chen and Xin Yao (editors), Simulated Evolution and Learning, 6th International Conference, SEAL 2006, pp. 837--844, Springer. Lecture Notes in Computer Science Vol. 4247, Hefei, China, October 2006.
  997. Gary G. Yen. Multi-Objective Evolutionary Algorithm for Radial Basis Function Neural Network Design, in Yaochu Jin (Editor), Multi-Objective Machine Learning, pp. 221--239, Springer. Studies in Computational Intelligence, Volume 16, Berlin, 2006.
  998. Gary G. Yen. Multi-objective Evolutionary Algorithm for Temporal Linguistic Rule Extraction, in Yaochu Jin (Editor), Multi-Objective Machine Learning, pp. 365--383, Springer. Studies in Computational Intelligence, Volume 16, Berlin, 2006.
  999. Peng-Yeng Yin, Chih-Chiang Chao and Ya-Tzu Chiang. Multiobjective Optimization for Nurse Scheduling, in Ying Tan, Yuhui Shi, Yi Chai and Guoyin Wang (editors), Advances in Swarm Intelligence, Second International Conference, ICSI 2011, pp. 66--73, Springer. Lecture Notes in Computer Science Vol. 6729, Chongqing, China, June 12-15, 2011.
  1000. Habib Youssef, Sadiq M. Sait and Salman A. Khan. Fuzzy Evolutionary Hybrid Metaheuristic for Network Topology Design. In Eckart Zitzler, Kalyanmoy Deb, Lothar Thiele, Carlos A. Coello Coello and David Corne, editors, First International Conference on Evolutionary Multi-Criterion Optimization, pages 400-415. Springer-Verlag. Lecture Notes in Computer Science No. 1993, 2001.
  1001. Yeboon Yun and Hirotaka Nakayama. Generalized data envelopment analysis and computational intelligence in multiple criteria decision making, in Michael Doumpos and Evangelos Grigoroudis (editors), Multicriteria Decision Aid and Artificial Intelligence: Links, Theory and Applications, Chapter 9, pp. 209--233, John Wiley & Sons, Chichester, United Kingdom, February 18, 2013, ISBN 978-1-119-97639-4.
  1002. Z

  1003. Martin Zaefferer, Thomas Bartz-Beielstein, Boris Naujoks, Tobias Wagner and Michael Emmerich. A Case Study on Multi-Criteria Optimization of an Event Detection Software under Limited Budgets, in Robin C. Purshouse, Peter J. Fleming, Carlos M. Fonseca, Salvatore Greco and Jane Shaw (editors), Evolutionary Multi-Criterion Optimization, 7th International Conference, EMO 2013, pp. 756--770, Springer. Lecture Notes in Computer Science Vol. 7811, Sheffield, UK, March 19-22, 2013.
  1004. Amelia Zafra and Sebastián Ventura. A Comparison of Multi-objective Grammar-Guided Genetic Programming Methods to Multiple Instance Learning, in Emilio Corchado, Xindong Wu, Erkki Oja, Álvaro Herrero and Bruno Baruque (editors), Hybrid Artificial Intelligence Systems, 4th International Conference, HAIS'2009, pp. 450--458, Springer. Lecture Notes in Computer Science Vol. 5572, Salamanca, Spain, June 10-12, 2009.
  1005. Susanne Zaglauer and Michael Deflorian. Multi-criteria Optimization for Parameter Estimation of Physical Models in Combustion Engine Calibration, in Robin C. Purshouse, Peter J. Fleming, Carlos M. Fonseca, Salvatore Greco and Jane Shaw (editors), Evolutionary Multi-Criterion Optimization, 7th International Conference, EMO 2013, pp. 628--640, Springer. Lecture Notes in Computer Science Vol. 7811, Sheffield, UK, March 19-22, 2013.
  1006. Daniela Zaharie and Dana Petcu. Adaptive Pareto Differential Evolution and Its Parallelization. in Roman Wyrzykowski, Jack Dongarra, Marcin Paprzycki and Jerzy Wasniewski, (editors), Parallel Processing and Applied Mathematics, pp. 261--268, Springer, Lecture Notes in Computer Science, Vol. 3019, Heidelberg, Germany, 2004.
  1007. Seyed-Hamid Zahiri and Seyed-Alireza Seyedin. Using Multi-Objective Particle Swarm Optimization for Designing Novel Classifiers. in Carlos Artemio Coello Coello, Satchidananda Dehuri and Susmita Ghosh, (editors), Swarm Intelligence for Multi-objective Problems in Data Mining, chapter 4, pp. 65--92, Springer. Studies in Computational Intelligence. Vol. 242, Berlin, 2009.
  1008. R. Romero Zaliz, I. Zwir and E. Ruspini. Generalized Analysis of Promoters: A Method for DNA Sequence Description, in Carlos A. Coello Coello and Gary B. Lamont (editors), Applications of Multi-Objective Evolutionary Algorithms, pp. 427--449, World Scientific, Singapore, 2004.
  1009. A.M.S. Zalzala, M.C. Ang, M. Chen, A.S. Rana and Q. Wang. Evolutionary algorithms for robotic systems: principles and implementations, in A.M.S. Zalzala and P.J. Fleming (editors), Genetic Algorithms in Engineering Systems, Chapter 8, pp. 161--202, The Institution of Electrical Engineers. Control Engineering Series 55, Bath, UK, 1997.
  1010. Saúl Zapotecas Martínez and Carlos A. Coello Coello. A Proposal to Hybridize Multi-Objective Evolutionary Algorithms with Non-Gradient Mathematical Programming Techniques, in Günter Rudolph, Thomas Jansen, Simon Lucas, Carlo Poloni and Nicola Beume (editors), Parallel Problem Solving from Nature--PPSN X, pp. 837--846, Springer, Lecture Notes in Computer Science Vol. 5199, Dortmund, Germany, September 2008.
  1011. Saúl Zapotecas Martínez and Carlos A. Coello Coello. A Memetic Algorithm with Non Gradient-Based Local Search Assisted by a Meta-Model, in Robert Schaefer, Carlos Cotta, Joanna Kolodziej and Günter Rudolph (editors), Parallel Problem Solving from Nature--PPSN XI, 11th International Conference, Proceedings, Part I, pp. 576--585, Springer, Lecture Notes in Computer Science Vol. 6238, Kraków, Poland, September 2010.
  1012. Rong-Qiang Zeng, Matthieu Basseur and Jin-Kao Hao. Hypervolume-Based Multi-Objective Path Relinking Algorithm, in Robin C. Purshouse, Peter J. Fleming, Carlos M. Fonseca, Salvatore Greco and Jane Shaw (editors), Evolutionary Multi-Criterion Optimization, 7th International Conference, EMO 2013, pp. 185--199, Springer. Lecture Notes in Computer Science Vol. 7811, Sheffield, UK, March 19-22, 2013.
  1013. Byoung-Tak Zhang and Heinz Mühlenbein. Adaptive Fitness Functions for Dynamic Growing/Pruning of Program Trees. In Peter J. Angeline and Jr. Kenneth E. Kinnear, editors, Advances in Genetic Programming 2, pages 241-256. MIT Press, 1996.
  1014. Yang Zheng and Peter I. Rockett. Feature Extraction Using Multi-Objective Genetic Programming, in Yaochu Jin (Editor), Multi-Objective Machine Learning, pp. 75--99, Springer. Studies in Computational Intelligence, Volume 16, Berlin, 2006.
  1015. Yang Zhang and Peter I Rockett. Multiobjective Genetic Programming Feature Extraction with Optimized Dimensionality. in Janusz Kacprzyk, (editor), Soft Computing in Industrial Applications, chapter 15, pp. 159--168, Springer. Advances in Soft Computing, Vol. 39, Berlin, 2007.
  1016. Yang Zhang, Hong, Yu Li, Mahesan Niranjan and Peter Rockett. Applying Cost-Sensitive Multiobjective Genetic Programming to Feature Extraction for Spam E-mail Filtering, in Michael O'Neill, Leonardo Vanneschi, Steven Gustafson, Anna Isabel Esparcia Alcázar, Ivanoe De Falco, Antonio Della Cioppa and Ernesto Tarantino (editors), Genetic Programming, 11th European Conference, EuroGP 2008, pp. 325-336, Springer, Lecture Notes in Computer Science Vol. 4971, Naples, Italy, March 2008.
  1017. Yongguo Zhang, Yayi Xu, Mingfa Zheng and Liu Ningning. The Properties of Birandom Multiobjective Programming Problems, in Ying Tan, Yuhui Shi, Yi Chai and Guoyin Wang (editors), Advances in Swarm Intelligence, Second International Conference, ICSI 2011, pp. 34--40, Springer. Lecture Notes in Computer Science Vol. 6729, Chongqing, China, June 12-15, 2011.
  1018. Bin Zhang, Kamran Shafi and Hussein A. Abbass. A Density Based Approach to the Access Point Layout Smart Distribution Grid Design Optimization Problem, in Lam Thu Bui, Yew Soon Ong, Nguyen Xuan Hoai, Hisao Ishibuchi and Ponnuthurai Nagaratnam Suganthan (editors), Simulated Evolution and Learning, 9th International Conference, SEAL 2012, pp. 73--82, Springer. Lecture Notes in Computer Science Vol. 7673, Hanoi, Vietnam, December 16-19, 2012.
  1019. Shuguang Zhao, Xinquan Lai and Mingying Zhao. A Uniform-Design Based Multi-objective Adaptive Genetic Algorithm and Its Application to Automated Design of Electronic Circuits, in Licheng Jiao, Lipo Wang, Xinbo Gao, Jing Liu and Feng Wu (editors), 2006 Second International Conference on Advances in Natural Computation (ICNC 2006), pp. 653--656, Springer. Lecture Notes in Computer Science, Vol. 4221, Xi'an, China, 2006. ISBN 3-540-45901-4.
  1020. Aimin Zhou, Qingfu Zhang, Yaochu Jin, Bernhard Sendhoff and Edward Tseng. Modelling the Population Distribution in Multi-objective Optimization by Generative Topographic Mapping, in Thomas Philip Runarsson, Hans-Georg Beyer, Edmund Burke, Juan J. Merelo-Guervós, L. Darrell Whitley and Xin Yao (editors), Parallel Problem Solving from Nature - PPSN IX, 9th International Conference, pp. 443--452, Springer. Lecture Notes in Computer Science Vol. 4193, Reykjavik, Iceland, September 2006.
  1021. Shang-Ming Zhou and John Q. Gan. Multiple Objective Learning for Constructing Interpretable Takagi-Sugeno Fuzzy Model, in Yaochu Jin (Editor), Multi-Objective Machine Learning, pp. 385--403, Springer. Studies in Computational Intelligence, Volume 16, Berlin, 2006.
  1022. Zuan Zhou, Guangming Dai, Pan Fang, Fangjie Chen and Yi Tan. An Improved Hybrid Multi-objective Particle Swarm Optimization Algorithm, in Lishan Kang, Zhihua Cai, Xuesong Yan and Yong Liu (editors), Advances in Computation and Intelligence, Third International Symposium, ISICA 2008, pp. 181--188, Springer. Lecture Notes in Computer Science Vol. 5370, Wuhan, China, December 19-21, 2008.
  1023. Aimin Zhou, Qingfu Zhang and Guixu Zhang. Approximation Model Guided Selection for Evolutionary Multiobjective Optimization, in Robin C. Purshouse, Peter J. Fleming, Carlos M. Fonseca, Salvatore Greco and Jane Shaw (editors), Evolutionary Multi-Criterion Optimization, 7th International Conference, EMO 2013, pp. 398--412, Springer. Lecture Notes in Computer Science Vol. 7811, Sheffield, UK, March 19-22, 2013.
  1024. Zexuan Zhu, Yew-Soon Ong and Jer-Lai Kuo. Feature Selection Using Single/Multi-Objective Memetic Frameworks, in Chi-Keong Goh, Yew-Soon Ong, and Kay Chen Tan (editors), Multi-Objective Memetic Algorithms, chapter 6, pp. 111--131, Springer, Studies in Computational Intelligence, Vol. 171, Berlin, Germany, 2009. ISBN 978-3-540-88050-9 .
  1025. Hanhong Zhu, Yun Chen and Kesheng Wang. Swarm Intelligence Algorithms for Portfolio Optimization, in Ying Tan, Yuhui Shi and Kay Chen Tan (editors), Advances in Swarm Intelligence, First International Conference, ICSI 2010, pp. 306--313, Springer. Lecture Notes in Computer Science Vol. 6145, Beijing, China, June 12-15, 2010.
  1026. Eckart Zitzler, Lothar Thiele and Johannes Bader. SPAM: Set Preference Algorithm for Multiobjective Optimization, in Günter Rudolph, Thomas Jansen, Simon Lucas, Carlo Poloni and Nicola Beume (editors), Parallel Problem Solving from Nature--PPSN X, pp. 847--858, Springer, Lecture Notes in Computer Science Vol. 5199, Dortmund, Germany, September 2008.
  1027. Eckart Zitzler, Joshua Knowles and Lothar Thiele. Quality Assessment of Pareto Set Approximations, in Jürgen Branke, Kalyanmoy Deb, Kaisa Miettinen and Roman Slowinski (editors), Multiobjective Optimization. Interactive and Evolutionary Approaches, pp. 373--404, Springer. Lecture Notes in Computer Science Vol. 5252, Berlin, Germany, 2008.
  1028. Eckart Zitzler. Evolutionary Multiobjective Optimization, in Grzegorz Rozenberg, Thomas Bäck and Joost N. Kok (editors), Handbook of Natural Computing, Chapter 28, pp. 871--904, Springer, Berlin, Germany, 2012, ISBN 978-3-540-92909-3.
  1029. Xinlu Zong, Shengwu Xiong, Zhixiang Fang and Qiuping Li. Multi-Objective Optimization for Massive Pedestrian Evacuation Using Ant Colony Algorithm, in Ying Tan, Yuhui Shi and Kay Chen Tan (editors), Advances in Swarm Intelligence, First International Conference, ICSI 2010, pp. 636--642, Springer. Lecture Notes in Computer Science Vol. 6145, Beijing, China, June 12-15, 2010.
  1030. Xiufen Zou, Yu Chen and Zishu Pan. Modeling and Optimization of the Specificity in Cell Signaling Pathways Based on a High Performance Multi-Objective Evolutionary Algorithm, in Tzai-Der Wang, Xiaodong Li, Shu-Heng Chen, Xufa Wang, Hussein Abbass, Hitoshi Iba, Guoliang Chen and Xin Yao (editors), Simulated Evolution and Learning, 6th International Conference, SEAL 2006, pp. 774--781, Springer. Lecture Notes in Computer Science Vol. 4247, Hefei, China, October 2006.
  1031. Federico Zuiani and Massimiliano Vasile. Multi-agent Collaborative Search with Tchebycheff Decomposition and Monotonic Basin Hopping Steps, in Bogdan Filipic and Jurij Silc (editors), Bioinspired Optimization Methods and Their Applications, Proceedings of the Fifth International Conference on Bioinspired Optimization Methods and their Applications, BIOMA 2012, pp. 109--120, Jozef Stefan Institute, Bohinj, Slovenia, May 2012.
  1032. Jesse B. Zydallis, David A. Van Veldhuizen and Gary B. Lamont. A Statistical Comparison of Multiobjective Evolutionary Algorithms Including the MOMGA-II. In Eckart Zitzler, Kalyanmoy Deb, Lothar Thiele, Carlos A. Coello Coello and David Corne, editors, First International Conference on Evolutionary Multi-Criterion Optimization, pages 226-240. Springer-Verlag. Lecture Notes in Computer Science No. 1993, 2001.